Ship Braking: Blue or Red Doppler Shift?

Click For Summary
SUMMARY

The discussion centers on the Doppler shift of exhaust gases from a spaceship decelerating towards Earth. Participants agree that if the exhaust is directed towards the observer on Earth, it will exhibit a blue Doppler shift, despite the ship's deceleration. However, the relatively low speed of conventional rocket exhaust (approximately 3 km/s) compared to the speed of light limits the visibility of any frequency shift. Alternative propulsion methods, such as ion drives, could produce higher ejecta speeds, potentially making relativistic effects more observable.

PREREQUISITES
  • Doppler Effect in astrophysics
  • Basic principles of rocket propulsion
  • Understanding of relativistic speeds
  • Knowledge of light frequency and wavelength
NEXT STEPS
  • Research "Doppler Effect in astrophysics" for detailed understanding
  • Explore "Ion drive propulsion systems" for higher ejecta speeds
  • Study "Relativistic physics" to grasp effects at high velocities
  • Investigate "Lidar technology" for spacecraft detection methods
USEFUL FOR

Astronomy enthusiasts, science fiction writers, and aerospace engineers interested in the physics of propulsion and Doppler effects in space travel.

Albertgauss
Gold Member
Messages
294
Reaction score
37
TL;DR
spectra deceleration doppler shift red blue
Let's imagine we have a ship heading towards our planet. It fires forward thrusters to brake. The ship is long way away. Because the ship decelerates, (slows down towards us) would we see particles from its exhaust doppler shifted blue or red? On the one hand the gas is flying towards Earth, so that would imply a blue doppler shift. On the other hand, the ship is slowing down, but would that decleration manifest itself as a red doppler shift somehow? I feel like the fact that the exhaust gas points towards, and is liberated from the ship, the gas would be Doppler blue shifted, but I'm not sure.
 
Astronomy news on Phys.org
Not acceleration but velocity to the observer matters for Doppler shift. Which direction of speed to the Earth observer does exhaust gas have in your setting ?
 
  • Like
Likes   Reactions: russ_watters
The velocity is the only thing that matters, not acceleration, when it comes to redshit/blueshift. If the exhaust is coming towards the planet it will be blueshifted. If it is moving away then it will be redshifted. With respect to an observer on the planet of course. Someone viewing the exhaust from a different location or frame of reference may see it completely different.
 
Albertgauss said:
Summary:: spectra deceleration doppler shift red blue

I feel like the fact that the exhaust gas points towards, and is liberated from the ship, the gas would be Doppler blue shifted, but I'm not sure.
Correct in principle and you got the 'sign' right. However there are two problems here. Firstly the ejecta from rockets is going far to slowly (relative to the rocket) for any relativistic effects to be observed and secondly, there will be a massive range in speeds of ejecta from a conventional rocket which(imo) would mask any subtle frequency shift in the observed light.

There are a number of possible alternatives for spaceship propulsion (e.g. Ion drive) which involve much higher speeds of ejecta. Relativistic shift would be more visible in that case but non-chemical propulsion involves small forces over a long time so actually observing the drive at work would be a huge problem as the emitted light would be so faint.

Is this a SF enquiry?
 
"Which direction of speed to the Earth observer does exhaust gas have in your setting ?"

The observer is on the Earth. They look up in space and see the braking gas coming towards them. The ship is moving towards Earth, but slowing down. The ship's velocity vector is dead-on pointing towards Earth.

"If the exhaust is coming towards the planet it will be blueshifted. If it is moving away then it will be redshifted."

Okay, sounds good. Appears to be what I'm looking for.

"Firstly the ejecta from rockets is going far to slowly (relative to the rocket) for any relativistic effects to be observed and secondly, there will be a massive range in speeds of ejecta from a conventional rocket which(imo) would mask any subtle frequency shift in the observed light."

I know that stars can eject gas that comes towards the Earth which astronomers see blue-shifted for a variety of situations. Does gas from stars then, need to be relativistic to have a noticeable blue-shift? So for a spaceship, the ejected exhaust traveling towards Earth would travel much more slowly than light from gas ejected from a star, is this correct? How much energy would a spaceship need whose braking exhaust would be blue-shifted, or would the wide range of speeds from braking exhaust erase any gas that blue-shifts, regardless of speed, relativistic or not?

Yes, this is an SF inquiry.

"There are a number of possible alternatives for spaceship propulsion (e.g. Ion drive) which involve much higher speeds of ejecta."

Any website where I can read about this is more detail?
 
Albertgauss said:
So for a spaceship, the ejected exhaust traveling towards Earth would travel much more slowly than light from gas ejected from a star, is this correct?
Speeds of around 3km/s for your average rocket engine exhaust gasses. That would be about 1/1000% of c which is, indeed, a lot slower than some particles ejected from stars at a sizeable fraction of c. Any shift in frequency would be hard to detect, bearing in mind the wide (continuous) spectrum of the hot exhaust.

Alternative forms of propulsion: A quick google of Spacecraft Propulsion yields quite a few hits. This Wiki link is a start for you. Any SF story needs to take account of the enormous time involved in accelerating and decelerating a rocket with what's available for long journeys.

If your story involves finding out the approach speed of a craft then there are other possible methods - say lidar (laser radar). If you don't know that a craft is approaching then you have the same problem as finding other small objects out there. Things are getting better in that respect, though, with dedicated satellite systems looking for rogue asteroids. How big would the craft be, though?
So many questions and the particular scenario would probably need a particular solution.
Good luck with that. SF can turn round and bite you if you overstretch the suspension of disbelief.
 
  • Like
Likes   Reactions: Klystron
Excellent everyone. I think I'm good to go.
 
  • Like
Likes   Reactions: sophiecentaur and berkeman

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
5
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
90
Views
12K