MHB Show all real roots are negative

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Negative Roots
Click For Summary
The discussion centers on proving that all real roots of the polynomial f(x) = x^5 - 10x + 38 are negative. Participants explore different approaches to the problem, emphasizing the importance of diverse methods for learning. One participant questions the implications of rewriting the function in a specific form and its relation to the domain. The conversation highlights the collaborative nature of problem-solving in mathematics. Ultimately, the focus remains on demonstrating the negativity of the roots.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that all real roots of the polynomial $f(x)=x^5-10x+38$ are negative.

Note:

I know this is a fairly easy challenge, but it's good to see how different approaches can be generated from different people so that we can learn from one another. :o (Yes)
 
Mathematics news on Phys.org
anemone said:
Show that all real roots of the polynomial $f(x)=x^5-10x+38$ are negative.

Note:

I know this is a fairly easy challenge, but it's good to see how different approaches can be generated from different people so that we can learn from one another. :o (Yes)

$f(x)= x^5 + 10(3.8-x) $
it is >0 for $0\le x\lt3.8$

further
$f(x) = x(x^4-10) + 38$

for $x\gt 2$ above is > 0 as $2^4 = 16 \gt 10$

so above is >0 for $2\le x$

we have shown that it is positive for x > 0 so no root 0 or positive hence all real roots are -ve.
 
Last edited:
kaliprasad said:
$f(x)= x^5 + 10(3.8-x) $
it is >0 for $0\le x\lt3.8$

further
$f(x) = x(x^4-10) + 38$

for $x\gt 2$ above is > 0 as $2^4 = 16 \gt 10$

so above is >0 for $2\le x$

we have shown that it is positive for x > 0 so no root 0 or positive hence all real roots are -ve.

Hi kaliprasad,

Thanks for participating.:) I am curious, is there any chance when you rewritten the function of $f$ as $f(x) = x(x^4-10) + 38$, you mean to imply the domain when $x\ge 10^{\tiny\dfrac{1}{4}}$?
 
anemone said:
Hi kaliprasad,

Thanks for participating.:) I am curious, is there any chance when you rewritten the function of $f$ as $f(x) = x(x^4-10) + 38$, you mean to imply the domain when $x\ge 10^{\tiny\dfrac{1}{4}}$?

You are right but I have shown that it is true for x < 3.8 from the 1st equation and I have chosen a suitable value < 3.8 ( that is 2) to show that it is true for x > 2. $x\ge 10^{\tiny\dfrac{1}{4}}$ condition is a superset of it. but if it is true for x > 2 it does meet the criteria
 
kaliprasad said:
You are right but I have shown that it is true for x < 3.8 from the 1st equation and I have chosen a suitable value < 3.8 ( that is 2) to show that it is true for x > 2. $x\ge 10^{\tiny\dfrac{1}{4}}$ condition is a superset of it. but if it is true for x > 2 it does meet the criteria

Oh My...I don't know what is wrong with me! How could I ask something so stupid! Sorry kali, I so wish to retract what I have asked just to appeared to be less silly...:o
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K