MHB Show at least one of the inequality must be true

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
For the given positive numbers \(a_1, a_2, \ldots, a_{12}\), at least one of three inequalities must hold true. The first inequality states that the sum of the ratios \(\frac{a_1}{a_2} + \frac{a_3}{a_4} + \frac{a_5}{a_6} + \frac{a_7}{a_8} + \frac{a_9}{a_{10}}\) is greater than or equal to 5. The second inequality asserts that \(\frac{a_{11}}{a_{12}} + \frac{a_2}{a_1} + \frac{a_4}{a_3} + \frac{a_6}{a_5}\) must be at least 4. Lastly, the third inequality claims that \(\frac{a_8}{a_7} + \frac{a_{10}}{a_9} + \frac{a_{12}}{a_{11}}\) is greater than or equal to 3. These inequalities highlight the relationships among the ratios of the positive numbers.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a_1,\,a_2,\,\cdots,\,a_{12}$ be positive numbers. Show that at least of the following must be true:

$\dfrac{a_1}{a_2}+\dfrac{a_3}{a_4}+\dfrac{a_5}{a_6}+\dfrac{a_7}{a_8}+\dfrac{a_9}{a_{10}}\ge 5$,

$\dfrac{a_{11}}{a_{12}}+\dfrac{a_2}{a_1}+\dfrac{a_4}{a_3}+\dfrac{a_6}{a_5}\ge 4$, or

$\dfrac{a_8}{a_7}+\dfrac{a_{10}}{a_9}+\dfrac{a_{12}}{a_{11}}\ge 3$
 
Mathematics news on Phys.org
anemone said:
Let $a_1,\,a_2,\,\cdots,\,a_{12}$ be positive numbers. Show that at least of the following must be true:

$\dfrac{a_1}{a_2}+\dfrac{a_3}{a_4}+\dfrac{a_5}{a_6}+\dfrac{a_7}{a_8}+\dfrac{a_9}{a_{10}}\ge 5---(1)$,

$\dfrac{a_{11}}{a_{12}}+\dfrac{a_2}{a_1}+\dfrac{a_4}{a_3}+\dfrac{a_6}{a_5}\ge 4---(2)$, or

$\dfrac{a_8}{a_7}+\dfrac{a_{10}}{a_9}+\dfrac{a_{12}}{a_{11}}\ge 3---(3)$

if all three statements are false then:
$\dfrac{a_1}{a_2}+\dfrac{a_3}{a_4}+\dfrac{a_5}{a_6}+\dfrac{a_7}{a_8}+\dfrac{a_9}{a_{10}}< 5---(4)$,

$\dfrac{a_{11}}{a_{12}}+\dfrac{a_2}{a_1}+\dfrac{a_4}{a_3}+\dfrac{a_6}{a_5}< 4---(5)$, and

$\dfrac{a_8}{a_7}+\dfrac{a_{10}}{a_9}+\dfrac{a_{12}}{a_{11}}< 3---(6)$
by $AM-GM$ again:
it should be:
$\dfrac{a_1}{a_2}\times\dfrac{a_3}{a_4}\times\dfrac{a_5}{a_6}\times\dfrac{a_7}{a_8}\times\dfrac{a_9}{a_{10}}<1 ---(7)$,

$\dfrac{a_{11}}{a_{12}}\times\dfrac{a_2}{a_1}\times\dfrac{a_4}{a_3}\times\dfrac{a_6}{a_5}<1---(8)$, and

$\dfrac{a_8}{a_7}\times\dfrac{a_{10}}{a_9}\times\dfrac{a_{12}}{a_{11}}<1---(9)$
but:
$(7)\times(8)\times(9)=1$,it is a contradiction
so at least one of the three must be true
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K