Show that ## 11\mid R_{n} ## if and only if ## n ## is even

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    even
Click For Summary
SUMMARY

The discussion establishes that a repunit \( R_n \) is divisible by 11 if and only if \( n \) is even. The proof begins by expressing \( R_n \) as \( R_n = 1 \cdot 10^{m} + \dotsb + 1 \cdot 10 + 1 \) and defining \( T = (a_0 - a_1) + (a_2 - a_3) + \dotsb + (-1)^{m} a_m \). It concludes that if \( 11 \mid R_n \), then \( T = 0 \), indicating \( n \) must be even. Conversely, if \( n \) is even, \( T \) also equals zero, confirming \( 11 \mid R_n \).

PREREQUISITES
  • Understanding of repunits and their mathematical representation
  • Familiarity with divisibility rules, specifically for 11
  • Basic knowledge of alternating sums and their properties
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the divisibility rule for 11 in detail
  • Explore properties of repunits and their applications in number theory
  • Learn about alternating sums and their significance in divisibility
  • Investigate related proofs involving palindromic numbers and their divisibility
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in proofs related to divisibility and repunits.

Math100
Messages
817
Reaction score
230
Homework Statement
Given a repunit ## R_{n} ##, show that ## 11\mid R_{n} ## if and only if ## n ## is even.
Relevant Equations
None.
Proof:

Suppose ## 11\mid R_{n} ##, given a repunit ## R_{n} ##.
Let ## R_{n}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then ## T=(1-1)+(1-1)+\dotsb +(-1)^{m}a_{m}=0 ##.
This means ## 11\mid R_{n}\implies T=0 ##.
Thus, ## n ## is even.
Conversely, suppose ## n ## is even.
Then ## 1-1+1-1+\dotsb -1+1=0 ## and ## 11\mid 0 ##.
Thus ## 11\mid R_{n} ##.
Therefore, ## 11\mid R_{n} ## if and only if ## n ## is even.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Given a repunit ## R_{n} ##, show that ## 11\mid R_{n} ## if and only if ## n ## is even.
Relevant Equations:: None.

Proof:

Suppose ## 11\mid R_{n} ##, given a repunit ## R_{n} ##.
Let ## R_{n}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then ## T=(1-1)+(1-1)+\dotsb +(-1)^{m}a_{m}=0 ##.
This means ## 11\mid R_{n}\implies T=0 ##.
Thus, ## n ## is even.
Conversely, suppose ## n ## is even.
Then ## 1-1+1-1+\dotsb -1+1=0 ## and ## 11\mid 0 ##.
Thus ## 11\mid R_{n} ##.
Therefore, ## 11\mid R_{n} ## if and only if ## n ## is even.
The first part is a bit clumsy and a link to the thread with that criterion that you use would have been nice, meaning: I couldn't find it.

I would write the first part as:

Suppose ## 11\mid R_{m} ##, given a repunit ## R_{m} ##.
Let ## R_{m}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then (insert link) ##T=0## and ##m## has to be even.

The second part is also shown in
https://www.physicsforums.com/threa...-number-of-digits-is-divisible-by-11.1017287/
 
fresh_42 said:
The first part is a bit clumsy and a link to the thread with that criterion that you use would have been nice, meaning: I couldn't find it.

I would write the first part as:

Suppose ## 11\mid R_{m} ##, given a repunit ## R_{m} ##.
Let ## R_{m}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then (insert link) ##T=0## and ##m## has to be even.

The second part is also shown in
https://www.physicsforums.com/threa...-number-of-digits-is-divisible-by-11.1017287/
But what specifically, should I insert in the first part of the proof, where "Then (insert link) ## T=0 ##..."?
 
Math100 said:
But what specifically, should I insert in the first part of the proof, where "Then (insert link) ## T=0 ##..."?
Sorry, my fault. You just use the divisibility by 11 criterion. I thought it was an earlier thread. I haven't had it in mind. So maybe a reminder for people like me would be nice: A number is divisible by 11 if and only if its alternating sum of digits is.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K