Show that ## 11\mid R_{n} ## if and only if ## n ## is even

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    even
Click For Summary

Homework Help Overview

The discussion revolves around the divisibility of repunits, specifically whether \( 11 \mid R_n \) if and only if \( n \) is even. Participants are exploring the properties of repunits and their relationship to divisibility by 11.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Some participants attempt to prove the statement by defining the structure of repunits and using the alternating sum of digits. Others question the clarity and completeness of the proof, suggesting that links to relevant criteria would enhance understanding.

Discussion Status

The discussion is ongoing, with participants providing insights into the proof structure and raising questions about specific details. There is a recognition of the need for clearer references to established criteria for divisibility by 11.

Contextual Notes

Participants note the importance of the divisibility rule for 11, which involves the alternating sum of digits, and express a desire for reminders or links to previous discussions that elaborate on this criterion.

Math100
Messages
823
Reaction score
234
Homework Statement
Given a repunit ## R_{n} ##, show that ## 11\mid R_{n} ## if and only if ## n ## is even.
Relevant Equations
None.
Proof:

Suppose ## 11\mid R_{n} ##, given a repunit ## R_{n} ##.
Let ## R_{n}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then ## T=(1-1)+(1-1)+\dotsb +(-1)^{m}a_{m}=0 ##.
This means ## 11\mid R_{n}\implies T=0 ##.
Thus, ## n ## is even.
Conversely, suppose ## n ## is even.
Then ## 1-1+1-1+\dotsb -1+1=0 ## and ## 11\mid 0 ##.
Thus ## 11\mid R_{n} ##.
Therefore, ## 11\mid R_{n} ## if and only if ## n ## is even.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Given a repunit ## R_{n} ##, show that ## 11\mid R_{n} ## if and only if ## n ## is even.
Relevant Equations:: None.

Proof:

Suppose ## 11\mid R_{n} ##, given a repunit ## R_{n} ##.
Let ## R_{n}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then ## T=(1-1)+(1-1)+\dotsb +(-1)^{m}a_{m}=0 ##.
This means ## 11\mid R_{n}\implies T=0 ##.
Thus, ## n ## is even.
Conversely, suppose ## n ## is even.
Then ## 1-1+1-1+\dotsb -1+1=0 ## and ## 11\mid 0 ##.
Thus ## 11\mid R_{n} ##.
Therefore, ## 11\mid R_{n} ## if and only if ## n ## is even.
The first part is a bit clumsy and a link to the thread with that criterion that you use would have been nice, meaning: I couldn't find it.

I would write the first part as:

Suppose ## 11\mid R_{m} ##, given a repunit ## R_{m} ##.
Let ## R_{m}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then (insert link) ##T=0## and ##m## has to be even.

The second part is also shown in
https://www.physicsforums.com/threa...-number-of-digits-is-divisible-by-11.1017287/
 
fresh_42 said:
The first part is a bit clumsy and a link to the thread with that criterion that you use would have been nice, meaning: I couldn't find it.

I would write the first part as:

Suppose ## 11\mid R_{m} ##, given a repunit ## R_{m} ##.
Let ## R_{m}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then (insert link) ##T=0## and ##m## has to be even.

The second part is also shown in
https://www.physicsforums.com/threa...-number-of-digits-is-divisible-by-11.1017287/
But what specifically, should I insert in the first part of the proof, where "Then (insert link) ## T=0 ##..."?
 
Math100 said:
But what specifically, should I insert in the first part of the proof, where "Then (insert link) ## T=0 ##..."?
Sorry, my fault. You just use the divisibility by 11 criterion. I thought it was an earlier thread. I haven't had it in mind. So maybe a reminder for people like me would be nice: A number is divisible by 11 if and only if its alternating sum of digits is.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K