Show that C gives a confidence interval for θ

Click For Summary
SUMMARY

The discussion focuses on deriving a confidence interval for the parameter θ in a discrete statistical product model defined by the probability mass function \( p_{\theta}(x_i)=\frac{1}{\theta}1_{\{1\leq x_i\leq \theta\}} \). The confidence interval \( C(x) \) is established as \( C(x)=\left \{\theta\in \Theta: \max (x_1, \ldots , x_n)\leq \theta\leq a^{-1/n}\cdot \max (x_1, \ldots , x_n)\right \} \) with a confidence probability of \( 1-\alpha \). For a sample \( x \) provided, the confidence interval is calculated as approximately \( \left \{\theta\in \Theta: 44\leq \theta\leq 56.47703\right \} \) for \( \alpha=0.05 \).

PREREQUISITES
  • Understanding of discrete statistical models
  • Familiarity with confidence intervals and their derivation
  • Knowledge of probability mass functions
  • Basic statistical inference concepts
NEXT STEPS
  • Study the derivation of confidence intervals in discrete distributions
  • Learn about the properties of maximum likelihood estimators
  • Explore the implications of confidence levels in statistical inference
  • Investigate the use of the Chi-squared distribution in confidence interval calculations
USEFUL FOR

Statisticians, data analysts, and researchers involved in statistical modeling and inference, particularly those working with discrete data and confidence interval estimation.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

For $n \in \mathbb{N}$ we consider the discrete statistical product model $(X, (\mathbb{P}_{\theta})_{\theta\in \Theta})$ with $X=\mathbb{N}^n$, $\Theta=\mathbb{N}$ and $p_{\theta}(x_i)=\frac{1}{\theta}1_{\{1\leq x_i\leq \theta\}}$ forall $x_i\in \mathbb{N}$, $\theta\in \Theta$.

Let $\alpha\in (0,1)$.

We define $$C(x)=\left \{\theta\in \Theta: \max (x_1, \ldots , x_n)\leq \theta\leq a^{-1/n}\cdot \max (x_1, \ldots , x_n)\right \}$$

(a) Show that $C$ gives a confidence interval for $\theta$ to the confidence probability $1-\alpha$.

(b) We have observed the following sample $x$ : $$2 \ \ \ \ 17 \ \ \ \ 44 \ \ \ \ 4 \ \ \ \ 16 \ \ \ \ 24 \ \ \ \ 32 \ \ \ \ 26 \ \ \ \ 21 \ \ \ \ 1 \ \ \ \ 24 \ \ \ \ 6$$
For $x$, calculate a confidence interval for $\theta$ with a confidence probability of $0.95$.
Could you give me a hint for (a) ? :unsure: For (b) I have done the following :

Do we use the part (a) here ? We have that $\alpha=0.05$ then we get the confidence interval \begin{align*}C&=\left \{\theta\in \Theta: \max (2 , 17 , 44 , 4, 16 , 24 ,32 , 26 ,21 , 1 , 24 ,6)\leq \theta\leq 0.05^{-1/12}\cdot \max (2 , 17 , 44 , 4, 16 , 24 ,32 , 26 ,21 , 1 , 24 ,6)\right \}\\ & =\left \{\theta\in \Theta: 44\leq \theta\leq 0.05^{-1/12}\cdot 44\right \}\\ & \approx \left \{\theta\in \Theta: 44\leq \theta\leq 56.47703\right \}\end{align*} Is that correct ? :unsure:
 
Physics news on Phys.org
For (a) we have to show that $P_\theta(\theta \in C(X)) \geq 1 - \alpha$, right?
Let $Y : =\max (x_1, \ldots , x_n)$ then do we have that $P_{\theta}(Y\leq \theta\leq \alpha^{-1/n}\cdot Y)=P_{\theta}(\theta\leq \alpha^{-1/n}\cdot Y)-P_{\theta}(\theta<Y)$ ?
Does it hold that $P_{\theta}(\theta\leq \alpha^{-1/n}\cdot Y)=P_{\theta}(\theta\cdot \alpha^{1/n}\leq Y)=P_{\theta}(Y\geq \theta\cdot \alpha^{1/n})=1-P_{\theta}(Y< \theta\cdot \alpha^{1/n})=1-p_{\theta}(\theta\cdot \alpha^{1/n})$ and $P_{\theta}(\theta<Y)=P_{\theta}(Y>\theta)=1-P_{\theta}(Y\leq \theta)=1- p_{\theta}(\theta)$ ?

:unsure:
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
26
Views
3K