MHB Show that C gives a confidence interval for θ

Click For Summary
The discussion focuses on establishing a confidence interval for the parameter θ in a discrete statistical product model. The confidence interval is defined as C(x) = {θ ∈ Θ: max(x_1, ..., x_n) ≤ θ ≤ a^(-1/n)·max(x_1, ..., x_n)}, where the confidence probability is set to 1 - α. Participants are working through the calculation of a 95% confidence interval using a provided sample, leading to an interval of approximately {θ: 44 ≤ θ ≤ 56.47703}. The discussion also addresses the requirement to show that P_θ(θ ∈ C(X)) ≥ 1 - α to validate the confidence interval. Overall, the thread emphasizes the mathematical derivation and verification of confidence intervals in statistical analysis.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

For $n \in \mathbb{N}$ we consider the discrete statistical product model $(X, (\mathbb{P}_{\theta})_{\theta\in \Theta})$ with $X=\mathbb{N}^n$, $\Theta=\mathbb{N}$ and $p_{\theta}(x_i)=\frac{1}{\theta}1_{\{1\leq x_i\leq \theta\}}$ forall $x_i\in \mathbb{N}$, $\theta\in \Theta$.

Let $\alpha\in (0,1)$.

We define $$C(x)=\left \{\theta\in \Theta: \max (x_1, \ldots , x_n)\leq \theta\leq a^{-1/n}\cdot \max (x_1, \ldots , x_n)\right \}$$

(a) Show that $C$ gives a confidence interval for $\theta$ to the confidence probability $1-\alpha$.

(b) We have observed the following sample $x$ : $$2 \ \ \ \ 17 \ \ \ \ 44 \ \ \ \ 4 \ \ \ \ 16 \ \ \ \ 24 \ \ \ \ 32 \ \ \ \ 26 \ \ \ \ 21 \ \ \ \ 1 \ \ \ \ 24 \ \ \ \ 6$$
For $x$, calculate a confidence interval for $\theta$ with a confidence probability of $0.95$.
Could you give me a hint for (a) ? :unsure: For (b) I have done the following :

Do we use the part (a) here ? We have that $\alpha=0.05$ then we get the confidence interval \begin{align*}C&=\left \{\theta\in \Theta: \max (2 , 17 , 44 , 4, 16 , 24 ,32 , 26 ,21 , 1 , 24 ,6)\leq \theta\leq 0.05^{-1/12}\cdot \max (2 , 17 , 44 , 4, 16 , 24 ,32 , 26 ,21 , 1 , 24 ,6)\right \}\\ & =\left \{\theta\in \Theta: 44\leq \theta\leq 0.05^{-1/12}\cdot 44\right \}\\ & \approx \left \{\theta\in \Theta: 44\leq \theta\leq 56.47703\right \}\end{align*} Is that correct ? :unsure:
 
Physics news on Phys.org
For (a) we have to show that $P_\theta(\theta \in C(X)) \geq 1 - \alpha$, right?
Let $Y : =\max (x_1, \ldots , x_n)$ then do we have that $P_{\theta}(Y\leq \theta\leq \alpha^{-1/n}\cdot Y)=P_{\theta}(\theta\leq \alpha^{-1/n}\cdot Y)-P_{\theta}(\theta<Y)$ ?
Does it hold that $P_{\theta}(\theta\leq \alpha^{-1/n}\cdot Y)=P_{\theta}(\theta\cdot \alpha^{1/n}\leq Y)=P_{\theta}(Y\geq \theta\cdot \alpha^{1/n})=1-P_{\theta}(Y< \theta\cdot \alpha^{1/n})=1-p_{\theta}(\theta\cdot \alpha^{1/n})$ and $P_{\theta}(\theta<Y)=P_{\theta}(Y>\theta)=1-P_{\theta}(Y\leq \theta)=1- p_{\theta}(\theta)$ ?

:unsure:
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...