Show that is the square of an integer

  • Context: MHB 
  • Thread starter Thread starter Joppy
  • Start date Start date
  • Tags Tags
    Integer Square
Click For Summary

Discussion Overview

The discussion revolves around a mathematical problem involving positive integers \(a\) and \(b\) where \(ab + 1\) divides \(a^2 + b^2\). Participants are tasked with showing that \(\frac{a^2 + b^2}{ab + 1}\) is the square of an integer. The scope includes problem-solving and mathematical reasoning.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants express interest in the problem, noting its complexity and layers.
  • Several participants mention that the problem is from the 1988 IMO, indicating its established context in mathematical competitions.
  • One participant questions the generality of the proposed solutions, suggesting that there may be multiple forms of solutions beyond those presented.
  • Another participant indicates that they believe a specific solution set has been identified but acknowledges the need for further verification.
  • Participants discuss the implications of the problem and its solutions, with some suggesting that it leads to a perfect square.

Areas of Agreement / Disagreement

There is no clear consensus on the generality of the solutions presented, with some participants suggesting that multiple solutions may exist while others focus on specific instances. The discussion remains unresolved regarding the completeness of the solutions.

Contextual Notes

Participants express uncertainty about whether the solutions provided are the most general or if other solutions exist. There is also a mention of the need to verify claims made about the nature of the solutions.

Joppy
MHB
Messages
282
Reaction score
22
I couldn't find this problem anywhere else on the forum so I thought I'd post it. If however, I am duplicating, mods feel free to remove the post :p.

No doubt many of you know it already, but I found it quite interesting.

Let $a$ and $b$ be positive integers such that $ab + 1$ divides $a^2 + b^2$. Show that $\frac{a^2 + b^2}{ab + 1}$ is the square of an integer.
 
Mathematics news on Phys.org
Joppy said:
I couldn't find this problem anywhere else on the forum so I thought I'd post it. If however, I am duplicating, mods feel free to remove the post :p.

No doubt many of you know it already, but I found it quite interesting.

Let $a$ and $b$ be positive integers such that $ab + 1$ divides $a^2 + b^2$. Show that $\frac{a^2 + b^2}{ab + 1}$ is the square or an integer.
This one's infuriating. I love it!

-Dan
 
topsquark said:
This one's infuriating. I love it!

-Dan

So many layers!
 
Joppy said:
I couldn't find this problem anywhere else on the forum so I thought I'd post it. If however, I am duplicating, mods feel free to remove the post :p.

No doubt many of you know it already, but I found it quite interesting.

Let $a$ and $b$ be positive integers such that $ab + 1$ divides $a^2 + b^2$. Show that $\frac{a^2 + b^2}{ab + 1}$ is the square of an integer.
my solution:
if $a=b^3$
then $\dfrac {a^2+b^2}{ab+1}=\dfrac {b^6+b^2}{b^4+1}=b^2$
if $b=a^3$
then $\dfrac {a^2+b^2}{ab+1}=\dfrac {a^2+a^6}{a^4+1}=a^2$
$\therefore ab+1$ divides $a^2+b^2$ we may set $a=b^3,or\,\, b=a^3$
(here $a,b \in N$)
 
Last edited:
This is problem #3 day 2 of the 1988 IMO.
 
mrtwhs said:
This is problem #3 day 2 of the 1988 IMO.

Thought it was no. 6.
 
Albert said:
my solution:
if $a=b^3$
then $\dfrac {a^2+b^2}{ab+1}=\dfrac {b^6+b^2}{b^4+1}=b^2$
if $b=a^3$
then $\dfrac {a^2+b^2}{ab+1}=\dfrac {a^2+a^6}{a^4+1}=a^2$
$\therefore ab+1$ divides $a^2+b^2$ we may set $a=b^3,or\,\, b=a^3$
(here $a,b \in N$)
How do we know that this is the most general solution (or that others don't exist)? I can't think of how to prove that one way or another.

-Dan
 
topsquark said:
How do we know that this is the most general solution (or that others don't exist)? I can't think of how to prove that one way or another.

-Dan

I think Albert has stumbled upon one set of solutions, but there are many more in similar forms.. But! I'll have to check myself first when I get a chance.
 
topsquark said:
How do we know that this is the most general solution (or that others don't exist)? I can't think of how to prove that one way or another.

-Dan
since we are given :$a^2+b^2 $ is a multiple of $ab+1$
we must find the relation between $a$ and $b$ as my example $a=b^3$ or $b=a^3$
may be we can find different link between $a,b$ and check the result
the following steps will help us finding other solutions:
if $a>b$
take $\dfrac {a^2+b^2}{ab+1}=2^2=4=k^2----(*)$ for instance
(1) set $a=b^3$,we get $a=8,b=2$
(2) put $b=8 $ to $(*)$ we get $a=2$ ,or $a=30$ another solution $ (a,b)=(30,8) $ is found
(3) put $b=30$ to $(*)$ we get $a=8$ or $a=112$ again $(a,b)=(112,30)$ is found
(4) put $b=112 $ to $(*)$ we get $a=30$ ,or $a=418$ another solution $ (a,b)=(418,112) $ is found
continue these steps until no other solution found then next $k$
 
Last edited:
  • #10
Albert said:
since we are given :$a^2+b^2 $ is a multiple of $ab+1$
we must find the relation between $a$ and $b$ as my example $a=b^3$ or $b=a^3$
may be we can find different link between $a,b$ and check the result
the following steps will help us finding other solutions:
if $a>b$
take $\dfrac {a^2+b^2}{ab+1}=2^2=4=k^2----(*)$ for instance
(1) set $a=b^3$,we get $a=8,b=2$
(2) put $b=8 $ to $(*)$ we get $a=2$ ,or $a=30$ another solution $ (a,b)=(30,8) $ is found
(3) put $b=30$ to $(*)$ we get $a=8$ or $a=112$ again $(a,b)=(112,30)$ is found
(4) put $b=112 $ to $(*)$ we get $a=30$ ,or $a=418$ another solution $ (a,b)=(418,112) $ is found
continue these steps until no other solution found then next $k$
The general solutions of :$\dfrac {a^2+b^2}{ab+1}=k^2-----(*)\,\,\,(a,b,k\in N)$
because of symmetry we let $a>b$
from previous solution we have $ b=k,a=b^3=k^3 $
put $b=k^3$ to $(*)$
we find another solution of $a$
$\dfrac {a^2+k^6}{ak^3+1}=k^2$
$\rightarrow a^2-ak^5+k^6-k^2=0$
$a=k,\,\, or \,\ ,a=k^5 - k$
 
  • #11
Albert said:
The general solutions of :$\dfrac {a^2+b^2}{ab+1}=k^2-----(*)\,\,\,(a,b,k\in N)$
because of symmetry we let $a>b$
from previous solution we have $ b=k,a=b^3=k^3 $
put $b=k^3$ to $(*)$
we find another solution of $a$
$\dfrac {a^2+k^6}{ak^3+1}=k^2$
$\rightarrow a^2-ak^5+k^6-k^2=0$
$a=k,\,\, or \,\ ,a=k^5 - k$

Albert,
you are digressing

you are finding general solution instead of proving that it is perfect square
 
  • #12
kaliprasad said:
Albert,
you are digressing

you are finding general solution instead of proving that it is perfect square
may be a little bit digressing,but from this I can deduce that it is perfect square:
$let :\dfrac{a^2+b^2}{ab+1}=y\\
a^2-yab+b^2-y=0\\
a=\dfrac{yb\pm\sqrt{y^2b^2-4b^2+4y}}{2}$
since $a,b\in N$
$y^2b^2-4b^2+4y$ must be perfect square
this can only be done with $b=y\sqrt y=k^3$
$a=\dfrac {y^2\sqrt y \pm (y^2\sqrt y-2\sqrt y)}{2}=y^2\sqrt y-\sqrt y =k^5-k\,\, or \,\, a=\sqrt y=k$
as given from general solution
here $(y=k^2)$ must be perfect square
 
  • #13
Albert said:
may be a little bit digressing,but from this I can deduce that it is perfect square:
$let :\dfrac{a^2+b^2}{ab+1}=y\\
a^2-yab+b^2-y=0\\
a=\dfrac{yb\pm\sqrt{y^2b^2-4b^2+4y}}{2}$
since $a,b\in N$
$y^2b^2-4b^2+4y$ must be perfect square
this can only be done with $b=y\sqrt y=k^3$
$a=\dfrac {y^2\sqrt y \pm (y^2\sqrt y-2\sqrt y)}{2}=y^2\sqrt y-\sqrt y =k^5-k\,\, or \,\, a=\sqrt y=k$
as given from general solution
here $(y=k^2)$ must be perfect square

This is a mixup between arithmetic and algebra. for example $b^2+5$ is not a perfect square in algebra but is it in arthmetic when $b=2$ as $2^2+5= 3^2$
 
  • #14
kaliprasad said:
This is a mixup between arithmetic and algebra. for example $b^2+5$ is not a perfect square in algebra but is it in arthmetic when $b=2$ as $2^2+5= 3^2$
note $a,b\in N$ and $ab+1$ divides $a^2+b^2$
$y^2b^2-4b^2+4y=(yb-2\sqrt y)^2$ is perfect square
this implies $b=y\sqrt y \in N$
$\therefore y$ must be perfect square
so $y=k^2, b=k^3$
 

Similar threads

Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K