MHB Show that the limit of f is equal to y

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The discussion focuses on proving that if a sequence of functions \( f_n \) converges uniformly to a function \( f \) on a set \( A \), and if the limit of \( f_n(x) \) as \( x \) approaches an accumulation point \( x_0 \) converges to \( y_n \), then the limit of \( f(x) \) as \( x \) approaches \( x_0 \) equals the limit of \( y_n \). The proof involves showing that the difference \( |f(x) - y| \) can be bounded by the differences \( |f(x) - y_n| \) and \( |y_n - y| \), leading to both terms converging to zero. The discussion critiques an alternative proof for not clearly demonstrating the role of uniform convergence, while affirming the correctness of the presented proof with a minor note on a potential error in the final epsilon term. The conclusion emphasizes the importance of uniform convergence in the argument.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! ;)
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.

That is the solution that the assistant of the professor gave us:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We have $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y|$

    $ \displaystyle \Rightarrow \lim_{x \to x_0} \sup_{x}{|f(x)-y|} \leq \lim_{x \to x_0} \sup_{x} |f(x)-y_n|+ \lim_{x \to x_0} \sup_{x} |y_n-y| \overset{n \to \infty}{\longrightarrow} 0+0=0$

    We have used that $ \displaystyle \lim_{x \to x_0} \sup_{x} {|f(x)-y_n|}=0$,because:

    $|f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f(x)-f_n(x)|+|f_n(x)-y_n|$

    $ \displaystyle \lim_{ x \to x_0} \sup_{x} |f(x)-y_n| \leq \lim_{x \to x_0} \sup_{x} |f(x)-f_n(x)|+ \lim_{x \to x_0} \sup_{x} |f_n(x)-y_n|$.

    But, $ \displaystyle \lim_{x \to x_0} \sup_{x} f(x)= \sup_{x} \{ \lim_{n \to + \infty}{f(z_n)} | z_n \to x_0 \}$

    Therefore, we have $ \displaystyle \lim_{x \to x_0} \sup_{x} |f(x)-y_n| \leq \sup_{x} |f(x)-f_n(x)|\overset{n \to \infty}{\longrightarrow} 0 $Is this right? I am not really sure... I would do it like that:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We want to show : $ \displaystyle \lim_{x \to x_0} f(x)= \lim_{n \to +\infty} y_n \Rightarrow \lim_{x \to x_0}f(x)=y$

    $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y| (1)$

    Let $\epsilon>0$. As $y_n \to y, \exists n_0$ such that $ \forall n \geq n_0: |y_n-y|< \epsilon$

    $ \displaystyle |f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f_n(x)-f(x)|+|f_n(x)-y_n|$

    $ \displaystyle \leq \sup_{x} |f_n(x)-f(x)| + |f_n(x)-y_n| \leq \epsilon $, because:

    $f_n \to f$ uniformly in $A$, so $ \displaystyle \sup_{x} |f_n(x)-f(x)| \leq \epsilon$.
    Also, $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$, so $|f_n(x)-y_n|< \epsilon$.

    From the relation $(1)$,we have $|f(x)-y| \leq \epsilon$.

Could you tell me if it is right?
 
Physics news on Phys.org
evinda said:
Hello! ;)
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.

That is the solution that the assistant of the professor gave us:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We have $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y|$

    $ \displaystyle \Rightarrow \lim_{x \to x_0} \sup_{x}{|f(x)-y|} \leq \lim_{x \to x_0} \sup_{x} |f(x)-y_n|+ \lim_{x \to x_0} \sup_{x} |y_n-y| \overset{n \to \infty}{\longrightarrow} 0+0=0$

    We have used that $ \displaystyle \lim_{x \to x_0} \sup_{x} {|f(x)-y_n|}=0$,because:

    $|f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f(x)-f_n(x)|+|f_n(x)-y_n|$

    $ \displaystyle \lim_{ x \to x_0} \sup_{x} |f(x)-y_n| \leq \lim_{x \to x_0} \sup_{x} |f(x)-f_n(x)|+ \lim_{x \to x_0} \sup_{x} |f_n(x)-y_n|$.

    But, $\color{red}{ \displaystyle \lim_{x \to x_0} \sup_{x} f(x)= \sup_{x} \{ \lim_{n \to + \infty}{f(z_n)} | z_n \to x_0 \}}$

    Therefore, we have $ \displaystyle \lim_{x \to x_0} \sup_{x} |f(x)-y_n| \leq \sup_{x} |f(x)-f_n(x)|\overset{n \to \infty}{\longrightarrow} 0 $Is this right? I am not really sure... I would do it like that:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We want to show : $ \displaystyle \lim_{x \to x_0} f(x)= \lim_{n \to +\infty} y_n \Rightarrow \lim_{x \to x_0}f(x)=y$

    $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y| (1)$

    Let $\epsilon>0$. As $y_n \to y, \exists n_0$ such that $ \forall n \geq n_0: |y_n-y|< \epsilon$

    $ \displaystyle |f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f_n(x)-f(x)|+|f_n(x)-y_n|$

    $ \displaystyle \leq \sup_{x} |f_n(x)-f(x)| + |f_n(x)-y_n| \leq \epsilon $, because:

    $f_n \to f$ uniformly in $A$, so $ \displaystyle \sup_{x} |f_n(x)-f(x)| \leq \epsilon$.
    Also, $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$, so $|f_n(x)-y_n|< \epsilon$.

    From the relation $(1)$,we have $|f(x)-y| \leq \epsilon$.

Could you tell me if it is right?
Your proof looks fine (except that the very last $ \epsilon$ looks as though it should be $2 \epsilon$). The other proof goes along the same lines apart from the equation that I have coloured red. I do not see what is going on there, and I don't trust it. In any case, it does not make clear where the uniform convergence $f_n\to f$ is used, unlike your solution which pinpoints that essential component of the proof.
 
Opalg said:
Your proof looks fine (except that the very last $ \epsilon$ looks as though it should be $2 \epsilon$). The other proof goes along the same lines apart from the equation that I have coloured red. I do not see what is going on there, and I don't trust it. In any case, it does not make clear where the uniform convergence $f_n\to f$ is used, unlike your solution which pinpoints that essential component of the proof.

Great!Thank you very much! :)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K