MHB Show that the limit of f is equal to y

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! ;)
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.

That is the solution that the assistant of the professor gave us:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We have $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y|$

    $ \displaystyle \Rightarrow \lim_{x \to x_0} \sup_{x}{|f(x)-y|} \leq \lim_{x \to x_0} \sup_{x} |f(x)-y_n|+ \lim_{x \to x_0} \sup_{x} |y_n-y| \overset{n \to \infty}{\longrightarrow} 0+0=0$

    We have used that $ \displaystyle \lim_{x \to x_0} \sup_{x} {|f(x)-y_n|}=0$,because:

    $|f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f(x)-f_n(x)|+|f_n(x)-y_n|$

    $ \displaystyle \lim_{ x \to x_0} \sup_{x} |f(x)-y_n| \leq \lim_{x \to x_0} \sup_{x} |f(x)-f_n(x)|+ \lim_{x \to x_0} \sup_{x} |f_n(x)-y_n|$.

    But, $ \displaystyle \lim_{x \to x_0} \sup_{x} f(x)= \sup_{x} \{ \lim_{n \to + \infty}{f(z_n)} | z_n \to x_0 \}$

    Therefore, we have $ \displaystyle \lim_{x \to x_0} \sup_{x} |f(x)-y_n| \leq \sup_{x} |f(x)-f_n(x)|\overset{n \to \infty}{\longrightarrow} 0 $Is this right? I am not really sure... I would do it like that:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We want to show : $ \displaystyle \lim_{x \to x_0} f(x)= \lim_{n \to +\infty} y_n \Rightarrow \lim_{x \to x_0}f(x)=y$

    $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y| (1)$

    Let $\epsilon>0$. As $y_n \to y, \exists n_0$ such that $ \forall n \geq n_0: |y_n-y|< \epsilon$

    $ \displaystyle |f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f_n(x)-f(x)|+|f_n(x)-y_n|$

    $ \displaystyle \leq \sup_{x} |f_n(x)-f(x)| + |f_n(x)-y_n| \leq \epsilon $, because:

    $f_n \to f$ uniformly in $A$, so $ \displaystyle \sup_{x} |f_n(x)-f(x)| \leq \epsilon$.
    Also, $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$, so $|f_n(x)-y_n|< \epsilon$.

    From the relation $(1)$,we have $|f(x)-y| \leq \epsilon$.

Could you tell me if it is right?
 
Physics news on Phys.org
evinda said:
Hello! ;)
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.

That is the solution that the assistant of the professor gave us:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We have $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y|$

    $ \displaystyle \Rightarrow \lim_{x \to x_0} \sup_{x}{|f(x)-y|} \leq \lim_{x \to x_0} \sup_{x} |f(x)-y_n|+ \lim_{x \to x_0} \sup_{x} |y_n-y| \overset{n \to \infty}{\longrightarrow} 0+0=0$

    We have used that $ \displaystyle \lim_{x \to x_0} \sup_{x} {|f(x)-y_n|}=0$,because:

    $|f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f(x)-f_n(x)|+|f_n(x)-y_n|$

    $ \displaystyle \lim_{ x \to x_0} \sup_{x} |f(x)-y_n| \leq \lim_{x \to x_0} \sup_{x} |f(x)-f_n(x)|+ \lim_{x \to x_0} \sup_{x} |f_n(x)-y_n|$.

    But, $\color{red}{ \displaystyle \lim_{x \to x_0} \sup_{x} f(x)= \sup_{x} \{ \lim_{n \to + \infty}{f(z_n)} | z_n \to x_0 \}}$

    Therefore, we have $ \displaystyle \lim_{x \to x_0} \sup_{x} |f(x)-y_n| \leq \sup_{x} |f(x)-f_n(x)|\overset{n \to \infty}{\longrightarrow} 0 $Is this right? I am not really sure... I would do it like that:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We want to show : $ \displaystyle \lim_{x \to x_0} f(x)= \lim_{n \to +\infty} y_n \Rightarrow \lim_{x \to x_0}f(x)=y$

    $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y| (1)$

    Let $\epsilon>0$. As $y_n \to y, \exists n_0$ such that $ \forall n \geq n_0: |y_n-y|< \epsilon$

    $ \displaystyle |f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f_n(x)-f(x)|+|f_n(x)-y_n|$

    $ \displaystyle \leq \sup_{x} |f_n(x)-f(x)| + |f_n(x)-y_n| \leq \epsilon $, because:

    $f_n \to f$ uniformly in $A$, so $ \displaystyle \sup_{x} |f_n(x)-f(x)| \leq \epsilon$.
    Also, $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$, so $|f_n(x)-y_n|< \epsilon$.

    From the relation $(1)$,we have $|f(x)-y| \leq \epsilon$.

Could you tell me if it is right?
Your proof looks fine (except that the very last $ \epsilon$ looks as though it should be $2 \epsilon$). The other proof goes along the same lines apart from the equation that I have coloured red. I do not see what is going on there, and I don't trust it. In any case, it does not make clear where the uniform convergence $f_n\to f$ is used, unlike your solution which pinpoints that essential component of the proof.
 
Opalg said:
Your proof looks fine (except that the very last $ \epsilon$ looks as though it should be $2 \epsilon$). The other proof goes along the same lines apart from the equation that I have coloured red. I do not see what is going on there, and I don't trust it. In any case, it does not make clear where the uniform convergence $f_n\to f$ is used, unlike your solution which pinpoints that essential component of the proof.

Great!Thank you very much! :)
 

Similar threads

Back
Top