Show that the limit of f is equal to y

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The discussion centers on proving that if \( f_n \to f \) uniformly in \( A \) and \( \lim_{x \to x_0} f_n(x) = y_n \) converges in \( \mathbb{R} \), then \( \lim_{x \to x_0} f(x) = \lim_{n \to +\infty} y_n \). The proof utilizes the triangle inequality to establish that \( |f(x) - y| \) can be bounded by \( |f(x) - y_n| + |y_n - y| \), leading to the conclusion that both terms approach zero. The uniform convergence of \( f_n \) to \( f \) is crucial in ensuring the limits behave as required.

PREREQUISITES
  • Understanding of uniform convergence in real analysis
  • Familiarity with limits and accumulation points in \( \mathbb{R} \)
  • Knowledge of the triangle inequality in mathematical proofs
  • Ability to manipulate supremum and limit operations
NEXT STEPS
  • Study the properties of uniform convergence in detail
  • Learn about the implications of the triangle inequality in analysis
  • Explore examples of limits involving sequences and functions in \( \mathbb{R} \)
  • Investigate the relationship between pointwise and uniform convergence
USEFUL FOR

Mathematics students, particularly those studying real analysis, educators teaching convergence concepts, and researchers working on functional analysis problems.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! ;)
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.

That is the solution that the assistant of the professor gave us:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We have $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y|$

    $ \displaystyle \Rightarrow \lim_{x \to x_0} \sup_{x}{|f(x)-y|} \leq \lim_{x \to x_0} \sup_{x} |f(x)-y_n|+ \lim_{x \to x_0} \sup_{x} |y_n-y| \overset{n \to \infty}{\longrightarrow} 0+0=0$

    We have used that $ \displaystyle \lim_{x \to x_0} \sup_{x} {|f(x)-y_n|}=0$,because:

    $|f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f(x)-f_n(x)|+|f_n(x)-y_n|$

    $ \displaystyle \lim_{ x \to x_0} \sup_{x} |f(x)-y_n| \leq \lim_{x \to x_0} \sup_{x} |f(x)-f_n(x)|+ \lim_{x \to x_0} \sup_{x} |f_n(x)-y_n|$.

    But, $ \displaystyle \lim_{x \to x_0} \sup_{x} f(x)= \sup_{x} \{ \lim_{n \to + \infty}{f(z_n)} | z_n \to x_0 \}$

    Therefore, we have $ \displaystyle \lim_{x \to x_0} \sup_{x} |f(x)-y_n| \leq \sup_{x} |f(x)-f_n(x)|\overset{n \to \infty}{\longrightarrow} 0 $Is this right? I am not really sure... I would do it like that:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We want to show : $ \displaystyle \lim_{x \to x_0} f(x)= \lim_{n \to +\infty} y_n \Rightarrow \lim_{x \to x_0}f(x)=y$

    $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y| (1)$

    Let $\epsilon>0$. As $y_n \to y, \exists n_0$ such that $ \forall n \geq n_0: |y_n-y|< \epsilon$

    $ \displaystyle |f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f_n(x)-f(x)|+|f_n(x)-y_n|$

    $ \displaystyle \leq \sup_{x} |f_n(x)-f(x)| + |f_n(x)-y_n| \leq \epsilon $, because:

    $f_n \to f$ uniformly in $A$, so $ \displaystyle \sup_{x} |f_n(x)-f(x)| \leq \epsilon$.
    Also, $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$, so $|f_n(x)-y_n|< \epsilon$.

    From the relation $(1)$,we have $|f(x)-y| \leq \epsilon$.

Could you tell me if it is right?
 
Physics news on Phys.org
evinda said:
Hello! ;)
Suppose that $A \subseteq \mathbb{R}, f_n \to f$ uniformly in $A$, $x_0$ an accumulation point of $A$ and $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$. $(y_n)$ converges in $\mathbb{R}$.Show that $ \displaystyle \lim_{x \to x_0} {f(x)}= \lim_{n \to +\infty} {y_n} \Rightarrow \lim_{x \to x_0} \lim_{n \to +\infty} {f_n(x)}= \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$.

That is the solution that the assistant of the professor gave us:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We have $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y|$

    $ \displaystyle \Rightarrow \lim_{x \to x_0} \sup_{x}{|f(x)-y|} \leq \lim_{x \to x_0} \sup_{x} |f(x)-y_n|+ \lim_{x \to x_0} \sup_{x} |y_n-y| \overset{n \to \infty}{\longrightarrow} 0+0=0$

    We have used that $ \displaystyle \lim_{x \to x_0} \sup_{x} {|f(x)-y_n|}=0$,because:

    $|f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f(x)-f_n(x)|+|f_n(x)-y_n|$

    $ \displaystyle \lim_{ x \to x_0} \sup_{x} |f(x)-y_n| \leq \lim_{x \to x_0} \sup_{x} |f(x)-f_n(x)|+ \lim_{x \to x_0} \sup_{x} |f_n(x)-y_n|$.

    But, $\color{red}{ \displaystyle \lim_{x \to x_0} \sup_{x} f(x)= \sup_{x} \{ \lim_{n \to + \infty}{f(z_n)} | z_n \to x_0 \}}$

    Therefore, we have $ \displaystyle \lim_{x \to x_0} \sup_{x} |f(x)-y_n| \leq \sup_{x} |f(x)-f_n(x)|\overset{n \to \infty}{\longrightarrow} 0 $Is this right? I am not really sure... I would do it like that:
  • We set $ \displaystyle y= \lim_{n \to + \infty} y_n$

    We want to show : $ \displaystyle \lim_{x \to x_0} f(x)= \lim_{n \to +\infty} y_n \Rightarrow \lim_{x \to x_0}f(x)=y$

    $|f(x)-y|=|f(x)-y_n+y_n-y| \leq |f(x)-y_n|+|y_n-y| (1)$

    Let $\epsilon>0$. As $y_n \to y, \exists n_0$ such that $ \forall n \geq n_0: |y_n-y|< \epsilon$

    $ \displaystyle |f(x)-y_n|=|f(x)-f_n(x)+f_n(x)-y_n| \leq |f_n(x)-f(x)|+|f_n(x)-y_n|$

    $ \displaystyle \leq \sup_{x} |f_n(x)-f(x)| + |f_n(x)-y_n| \leq \epsilon $, because:

    $f_n \to f$ uniformly in $A$, so $ \displaystyle \sup_{x} |f_n(x)-f(x)| \leq \epsilon$.
    Also, $ \displaystyle \lim_{x \to x_0} {f_n(x)}=y_n \in \mathbb{R}$, so $|f_n(x)-y_n|< \epsilon$.

    From the relation $(1)$,we have $|f(x)-y| \leq \epsilon$.

Could you tell me if it is right?
Your proof looks fine (except that the very last $ \epsilon$ looks as though it should be $2 \epsilon$). The other proof goes along the same lines apart from the equation that I have coloured red. I do not see what is going on there, and I don't trust it. In any case, it does not make clear where the uniform convergence $f_n\to f$ is used, unlike your solution which pinpoints that essential component of the proof.
 
Opalg said:
Your proof looks fine (except that the very last $ \epsilon$ looks as though it should be $2 \epsilon$). The other proof goes along the same lines apart from the equation that I have coloured red. I do not see what is going on there, and I don't trust it. In any case, it does not make clear where the uniform convergence $f_n\to f$ is used, unlike your solution which pinpoints that essential component of the proof.

Great!Thank you very much! :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K