Show that the number a is not a square of an integer

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Integer Square
Click For Summary

Discussion Overview

The discussion revolves around the question of whether the number $a=201340168052123987111222893$ can be shown to be not a square of an integer, specifically using modular arithmetic in $\mathbb{Z}_8$ and $\mathbb{Z}_{10}$. Participants explore different approaches and reasoning without arriving at a definitive conclusion.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant proposes using $\mathbb{Z}_8$ to show that $a$ is not a square by calculating $[a]$ and comparing it to possible values of $[b^2]$.
  • Another participant confirms the correctness of the first participant's reasoning in $\mathbb{Z}_8$ and suggests that it might be easier to analyze the problem in $\mathbb{Z}_{10}$.
  • It is noted that the last digit of a perfect square in base 10 can only be 0, 1, 4, 5, 6, or 9, and since 3 is not included in this list, it supports the claim that $a$ is not a square.

Areas of Agreement / Disagreement

Participants generally agree on the reasoning presented, especially regarding the last digit of perfect squares, but there is no consensus on whether the approach in $\mathbb{Z}_8$ is the only or best method.

Contextual Notes

The discussion does not resolve the broader implications of using different modular systems or the completeness of the arguments presented.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o I have to show that the number $a=201340168052123987111222893$ is not a square of an integer, without doing calculations.Could I solve this in $\mathbb{Z}_8$?
I mean that the number $a$ can be written as followed:
$$a=3+9 \cdot 10 +8 \cdot 10^2 + 2 \cdot 10^3+...$$
Since at $\mathbb{Z}_8$: $[10]=[2], [10^2]=[4], [10^3]=[8]=[0], [10^k]=[0] \text{ for }k \geq 3$ we have:
$$[a]=[3]+[9] \cdot [10]+[8] \cdot [10^2]+[2] \cdot [10^3]+...=[3]+[1] \cdot[2]=[3]+[2]=[3+2]=[5]$$
We suppose that $a$ is a square of an integer, so $a=b^2 \Rightarrow [a]=[b^2]$. So it must be be $[b^2]=[5]$. The possible values of $[b^2]$ are:
$$\left.\begin{matrix}
: & [0] & [1] & [2] & [3] & [4] &[5] & [6] & [7]\\
[b^2]:& [0] &[1] & [4] & [1] &[0] & [1] &[4] & [1]
\end{matrix}\right.$$
Since there is not the value $[5]$, it cannot be true..So $a$ cannot be a square of an integer.

Is this correct? Or can I not just solve this in $\mathbb{Z}_8$?
 
Last edited by a moderator:
Mathematics news on Phys.org
mathmari said:
Hey! :o I have to show that the number $a=201340168052123987111222893$ is not a square of an integer, without doing calculations.Could I solve this in $\mathbb{Z}_8$?
I mean that the number $a$ can be written as followed:
$$a=3+9 \cdot 10 +8 \cdot 10^2 + 2 \cdot 10^3+...$$
Since at $\mathbb{Z}_8$: $[10]=[2], [10^2]=[4], [10^3]=[8]=[0], [10^k]=[0] \text{ for }k \geq 3$ we have:
$$[a]=[3]+[9] \cdot [10]+[8] \cdot [10^2]+[2] \cdot [10^3]+...=[3]+[1] \cdot[2]=[3]+[2]=[3+2]=[5]$$
We suppose that $a$ is a square of an integer, so $a=b^2 \Rightarrow [a]=[b^2]$. So it must be be $[b^2]=[5]$. The possible values of $[b^2]$ are:
$$\left.\begin{matrix}
: & [0] & [1] & [2] & [3] & [4] &[5] & [6] & [7]\\
[b^2]:& [0] &[1] & [4] & [1] &[0] & [1] &[4] & [1]
\end{matrix}\right.$$
Since there is not the value $[5]$, it cannot be true..So $a$ cannot be a square of an integer.

Is this correct? Or can I not just solve this in $\mathbb{Z}_8$?


Yep. All correct! ;)

Note that it is slightly easier in $\mathbb Z_{10}$.
What are the possibilities for the last digit of any square?
 
As ILS points out, the last digit (in base 10, our usual base system) of a perfect square must be either:

0,1,4,5,6 or 9.

3 is not on this list.
 
I like Serena said:
Yep. All correct! ;)

Note that it is slightly easier in $\mathbb Z_{10}$.
What are the possibilities for the last digit of any square?

Deveno said:
As ILS points out, the last digit (in base 10, our usual base system) of a perfect square must be either:

0,1,4,5,6 or 9.

3 is not on this list.

Ok! Thank you both for your answer! :o
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
823
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K