MHB Show that the number a is not a square of an integer

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Integer Square
AI Thread Summary
The number a = 201340168052123987111222893 is shown to not be a square of an integer using modular arithmetic in Z_8. The calculation reveals that a reduces to [5] in Z_8, while the possible quadratic residues in this system do not include [5]. Additionally, it is noted that examining the last digit of a in base 10 shows it ends in 3, which is also not a possible last digit for a perfect square. Thus, both methods confirm that a cannot be a square of an integer. The discussion concludes with validation of the correctness of the approach.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o I have to show that the number $a=201340168052123987111222893$ is not a square of an integer, without doing calculations.Could I solve this in $\mathbb{Z}_8$?
I mean that the number $a$ can be written as followed:
$$a=3+9 \cdot 10 +8 \cdot 10^2 + 2 \cdot 10^3+...$$
Since at $\mathbb{Z}_8$: $[10]=[2], [10^2]=[4], [10^3]=[8]=[0], [10^k]=[0] \text{ for }k \geq 3$ we have:
$$[a]=[3]+[9] \cdot [10]+[8] \cdot [10^2]+[2] \cdot [10^3]+...=[3]+[1] \cdot[2]=[3]+[2]=[3+2]=[5]$$
We suppose that $a$ is a square of an integer, so $a=b^2 \Rightarrow [a]=[b^2]$. So it must be be $[b^2]=[5]$. The possible values of $[b^2]$ are:
$$\left.\begin{matrix}
: & [0] & [1] & [2] & [3] & [4] &[5] & [6] & [7]\\
[b^2]:& [0] &[1] & [4] & [1] &[0] & [1] &[4] & [1]
\end{matrix}\right.$$
Since there is not the value $[5]$, it cannot be true..So $a$ cannot be a square of an integer.

Is this correct? Or can I not just solve this in $\mathbb{Z}_8$?
 
Last edited by a moderator:
Mathematics news on Phys.org
mathmari said:
Hey! :o I have to show that the number $a=201340168052123987111222893$ is not a square of an integer, without doing calculations.Could I solve this in $\mathbb{Z}_8$?
I mean that the number $a$ can be written as followed:
$$a=3+9 \cdot 10 +8 \cdot 10^2 + 2 \cdot 10^3+...$$
Since at $\mathbb{Z}_8$: $[10]=[2], [10^2]=[4], [10^3]=[8]=[0], [10^k]=[0] \text{ for }k \geq 3$ we have:
$$[a]=[3]+[9] \cdot [10]+[8] \cdot [10^2]+[2] \cdot [10^3]+...=[3]+[1] \cdot[2]=[3]+[2]=[3+2]=[5]$$
We suppose that $a$ is a square of an integer, so $a=b^2 \Rightarrow [a]=[b^2]$. So it must be be $[b^2]=[5]$. The possible values of $[b^2]$ are:
$$\left.\begin{matrix}
: & [0] & [1] & [2] & [3] & [4] &[5] & [6] & [7]\\
[b^2]:& [0] &[1] & [4] & [1] &[0] & [1] &[4] & [1]
\end{matrix}\right.$$
Since there is not the value $[5]$, it cannot be true..So $a$ cannot be a square of an integer.

Is this correct? Or can I not just solve this in $\mathbb{Z}_8$?


Yep. All correct! ;)

Note that it is slightly easier in $\mathbb Z_{10}$.
What are the possibilities for the last digit of any square?
 
As ILS points out, the last digit (in base 10, our usual base system) of a perfect square must be either:

0,1,4,5,6 or 9.

3 is not on this list.
 
I like Serena said:
Yep. All correct! ;)

Note that it is slightly easier in $\mathbb Z_{10}$.
What are the possibilities for the last digit of any square?

Deveno said:
As ILS points out, the last digit (in base 10, our usual base system) of a perfect square must be either:

0,1,4,5,6 or 9.

3 is not on this list.

Ok! Thank you both for your answer! :o
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top