MHB Show that x+y+z≥√[((x+1)(y+2)(z+2))/(3)]

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on proving the inequality x+y+z≥√[((x+1)(y+2)(z+2))/(3)] under the condition that x, y, z are positive real numbers with xyz=1. Participants reference the application of the Arithmetic Mean-Geometric Mean (AM-GM) inequality to derive the result. A key point involves manipulating the expression to show that (x+y+z)^2 - 2(xy+yz+zx) leads to a conclusion that supports the inequality. The conversation highlights the importance of using established mathematical principles, such as AM-GM, to validate the proof. Overall, the thread emphasizes collaborative problem-solving in mathematical proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be positive real numbers satisfying $xyz=1$.

Show that $x+y+z\ge \sqrt{\dfrac{(x+2)(y+2)(z+2)}{3}}$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be positive real numbers satisfying $xyz=1$.
Show that $x+y+z\ge \sqrt{\dfrac{(x+2)(y+2)(z+2)}{3}}---(1)$.
let :$x,y,z $ be the roots of :$ t^3-at^2+bt-1=0 (here \ \, x,y,z>0)$
we have :$a=x+y+z\geq 3---(2)$
and $b=xy+yz+zx\geq 3---(3)$
$xyz=1---(4)$
also $a^2 - 2b \geq 3---(5)$
if (1) is true we only have to prove :$3a^2\geq 9+4a+2b----(*)$
from (2)(3)(5) it is easy to see (*) is true ,
and the proof is done
 
Albert said:
let :$x,y,z $ be the roots of :$ t^3-at^2+bt-1=0 (here \ \, x,y,z>0)$
we have :$a=x+y+z\geq 3---(2)$
and $b=xy+yz+zx\geq 3---(3)$
$xyz=1---(4)$
also $a^2 - 2b \geq 3---(5)$
if (1) is true we only have to prove :$3a^2\geq 9+4a+2b----(*)$
from (2)(3)(5) it is easy to see (*) is true ,
and the proof is done

uanble to follow

$a^2 - 2b \geq 3---(5)$
 
kaliprasad said:
uanble to follow

$a^2 - 2b \geq 3---(5)$
$a^2-2b=(x+y+z)^2-2(xy+yz+zx)$
$=x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}=3$
using:$AP\geq GP$
 
Albert said:
let :$x,y,z $ be the roots of :$ t^3-at^2+bt-1=0 (here \ \, x,y,z>0)$
we have :$a=x+y+z\geq 3---(2)$
and $b=xy+yz+zx\geq 3---(3)$
$xyz=1---(4)$
also $a^2 - 2b \geq 3---(5)$
if (1) is true we only have to prove :$3a^2\geq 9+4a+2b----(*)$
from (2)(3)(5) it is easy to see (*) is true ,
and the proof is done

Thanks Albert for participating and the solution that I want to show you and MHB is more or less using the same method as you:

First, we apply AM-GM to $a^2$ and 1 and we get: $a^2+1\ge 2\sqrt{a^2}\ge 2a$

We repeat this for $b$ and $c$ and add the resulting inequalities yields

$a^2+b^2+c^2+3\ge 2(a+b+c)$---(1)

Next, apply AM-GM to $ab,\,bc,\,ac$ gives us $ab+bc+ac\ge 3\sqrt[3]{(abc)^2}\ge 3$---(2) since $abc=1$.

Again, by AM-GM applying on $a^2,\,b^2,\,c^2$ we have $a^2+b^2+c^2\ge 3\sqrt[3]{(abc)^2}\ge 3$---(3) since $abc=1$.

Now, we add $2\times (1)+4\times (2)+(3)$ and that gives

$3(a^2+b^2+c^2)+4(ab+bc+ac)\ge 4(a+b+c)+9$

Add $2(ab+bc+ac)$ to both sides of the inequality above gives

$3(a^2+b^2+c^2)+6(ab+bc+ac)\ge 2(ab+bc+ac)+4(a+b+c)+9$

$3((a^2+b^2+c^2)+2(ab+bc+ac))\ge (a+2)(b+2)(c+2)$

$3(a+b+c)^2\ge (a+2)(b+2)(c+2)$

$a+b+c\ge \sqrt{\dfrac{(a+2)(b+2)(c+2)}{3}}$ (Q.E.D.)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top