Show that x+y+z≥√[((x+1)(y+2)(z+2))/(3)]

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The inequality \(x+y+z \geq \sqrt{\frac{(x+2)(y+2)(z+2)}{3}}\) holds for positive real numbers \(x, y, z\) satisfying the condition \(xyz=1\). The proof utilizes the relationship \(a^2 - 2b = (x+y+z)^2 - 2(xy+yz+zx)\) and applies the Arithmetic Mean-Geometric Mean (AM-GM) inequality, confirming that \(x^2 + y^2 + z^2 \geq 3\). This establishes that the sum of the variables is always greater than or equal to the square root of the average of their adjusted values.

PREREQUISITES
  • Understanding of inequalities, specifically AM-GM inequality
  • Familiarity with algebraic manipulation of expressions
  • Knowledge of positive real numbers and their properties
  • Basic understanding of symmetric sums and products
NEXT STEPS
  • Study the proof of the AM-GM inequality in detail
  • Explore symmetric inequalities and their applications
  • Learn about the properties of positive real numbers and their implications in inequalities
  • Investigate advanced algebraic techniques for manipulating inequalities
USEFUL FOR

Mathematicians, students studying inequalities, and anyone interested in algebraic proofs and their applications in real analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be positive real numbers satisfying $xyz=1$.

Show that $x+y+z\ge \sqrt{\dfrac{(x+2)(y+2)(z+2)}{3}}$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be positive real numbers satisfying $xyz=1$.
Show that $x+y+z\ge \sqrt{\dfrac{(x+2)(y+2)(z+2)}{3}}---(1)$.
let :$x,y,z $ be the roots of :$ t^3-at^2+bt-1=0 (here \ \, x,y,z>0)$
we have :$a=x+y+z\geq 3---(2)$
and $b=xy+yz+zx\geq 3---(3)$
$xyz=1---(4)$
also $a^2 - 2b \geq 3---(5)$
if (1) is true we only have to prove :$3a^2\geq 9+4a+2b----(*)$
from (2)(3)(5) it is easy to see (*) is true ,
and the proof is done
 
Albert said:
let :$x,y,z $ be the roots of :$ t^3-at^2+bt-1=0 (here \ \, x,y,z>0)$
we have :$a=x+y+z\geq 3---(2)$
and $b=xy+yz+zx\geq 3---(3)$
$xyz=1---(4)$
also $a^2 - 2b \geq 3---(5)$
if (1) is true we only have to prove :$3a^2\geq 9+4a+2b----(*)$
from (2)(3)(5) it is easy to see (*) is true ,
and the proof is done

uanble to follow

$a^2 - 2b \geq 3---(5)$
 
kaliprasad said:
uanble to follow

$a^2 - 2b \geq 3---(5)$
$a^2-2b=(x+y+z)^2-2(xy+yz+zx)$
$=x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}=3$
using:$AP\geq GP$
 
Albert said:
let :$x,y,z $ be the roots of :$ t^3-at^2+bt-1=0 (here \ \, x,y,z>0)$
we have :$a=x+y+z\geq 3---(2)$
and $b=xy+yz+zx\geq 3---(3)$
$xyz=1---(4)$
also $a^2 - 2b \geq 3---(5)$
if (1) is true we only have to prove :$3a^2\geq 9+4a+2b----(*)$
from (2)(3)(5) it is easy to see (*) is true ,
and the proof is done

Thanks Albert for participating and the solution that I want to show you and MHB is more or less using the same method as you:

First, we apply AM-GM to $a^2$ and 1 and we get: $a^2+1\ge 2\sqrt{a^2}\ge 2a$

We repeat this for $b$ and $c$ and add the resulting inequalities yields

$a^2+b^2+c^2+3\ge 2(a+b+c)$---(1)

Next, apply AM-GM to $ab,\,bc,\,ac$ gives us $ab+bc+ac\ge 3\sqrt[3]{(abc)^2}\ge 3$---(2) since $abc=1$.

Again, by AM-GM applying on $a^2,\,b^2,\,c^2$ we have $a^2+b^2+c^2\ge 3\sqrt[3]{(abc)^2}\ge 3$---(3) since $abc=1$.

Now, we add $2\times (1)+4\times (2)+(3)$ and that gives

$3(a^2+b^2+c^2)+4(ab+bc+ac)\ge 4(a+b+c)+9$

Add $2(ab+bc+ac)$ to both sides of the inequality above gives

$3(a^2+b^2+c^2)+6(ab+bc+ac)\ge 2(ab+bc+ac)+4(a+b+c)+9$

$3((a^2+b^2+c^2)+2(ab+bc+ac))\ge (a+2)(b+2)(c+2)$

$3(a+b+c)^2\ge (a+2)(b+2)(c+2)$

$a+b+c\ge \sqrt{\dfrac{(a+2)(b+2)(c+2)}{3}}$ (Q.E.D.)
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K