# A Solution form for the following differential equation

#### Josu Aguirrebeitia

Hi. After arranging the dynamic contact between a elastic ball against a flat, I have reached the following differential equation for the motion during the contact:

m·x’’+(k+c·x’)·x^n=0

with m,c,k>0 and for exponent n --> 1<n<2

Any functional form for this equation??? I have solved it numerically but I would love if any functional analytical form exist...

Thanks!!

Related Differential Equations News on Phys.org

#### RPinPA

Homework Helper
I tried sending it to Wolfram Alpha, which I think is run on Mathematica. It required the Pro package (which I have) to solve it, but even so what I got was a complicated integral expression involving the Lambert W function rather than a closed form analytical expression.

https://www.wolframalpha.com/input/?i=m·x(t)’’+(k+c·x(t)’)·x(t)^n=0

Solution: $$\alpha_1 + t = \int_1^{x(t)} \frac {c} {k\left( -W\left(\frac {-\sqrt[n+1]{\exp\left(\frac{c^2 \xi^{n+1}}{km}\right) - n - \frac{c^2n\alpha_1}{k} - \frac{c^2\alpha_1}{k} - 1}} {k}\right) \right) - k} d\xi$$
But then it also said the computation time was exceeded, so maybe there was more it could do with this.

If you have access to Mathematica, this is the code it generated to evaluate the expression.
Code:
DSolve[{x[t]^n (k + c x'[t]) + m x''[t] == 0}, x[t], t]

#### Josu Aguirrebeitia

Thank you for your time RPinPA, I appreciate. However, a numerical procedure is to be used in this case too, I solved the equation numerically for t with a explicit scheme, but I am after a closed analytical form of the solution.... maybe impossible...

Thank you again!

J
---

"Solution form for the following differential equation"

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving