Solve ## 4x+51y=9: x=15+51t, y=-1-4t ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The Diophantine equation 4x + 51y = 9 is solved by first establishing that gcd(51, 4) = 1, allowing for the use of modular arithmetic. The congruence 4x ≡ 9 (mod 51) leads to the solution x ≡ 15 (mod 51), while 51y ≡ 9 (mod 4) gives y ≡ 3 (mod 4). This results in the general solutions x = 15 + 51t and y = -1 - 4t for integers t. A verification step confirms that these solutions satisfy the original equation. The discussion emphasizes the importance of checking the sufficiency of derived solutions in modular arithmetic.
Math100
Messages
813
Reaction score
229
Homework Statement
Using congruences, solve the Diophantine equation below:
## 4x+51y=9 ##.
[Hint: ## 4x\equiv 9\pmod {51} ## gives ## x=15+51t ##, whereas ## 51y\equiv 9\pmod {4} ## gives ## y=3+4s ##. Find the relation between ## s ## and ## t ##.]
Relevant Equations
None.
Consider the Diophantine equation ## 4x+51y=9 ##.
Observe that ## gcd(51, 4)=1 ##.
Then ## 4x\equiv 9\pmod {51}\implies 52x\equiv 117\pmod {51}\implies x\equiv 15\pmod {51} ##.
Now we have ## 51y\equiv 9\pmod {4}\implies 3y\equiv 1\pmod {4}\implies y\equiv 3\pmod {4} ##.
This means ## x=15+51t ## and ## y=3+4s, \forall t, s ##.
Since ## 4(15+51t)+51(3+4s)=9 ##, it follows that ## s=-1-t ##.
Thus ## y=3+4s=3+4(-1-t)=-1-4t ##.
Therefore, ## x=15+51t ## and ## y=-1-4t, \forall t, s ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Using congruences, solve the Diophantine equation below:
## 4x+51y=9 ##.
[Hint: ## 4x\equiv 9\pmod {51} ## gives ## x=15+51t ##, whereas ## 51y\equiv 9\pmod {4} ## gives ## y=3+4s ##. Find the relation between ## s ## and ## t ##.]
Relevant Equations:: None.

Consider the Diophantine equation ## 4x+51y=9 ##.
Observe that ## gcd(51, 4)=1 ##.
Then ## 4x\equiv 9\pmod {51}\implies 52x\equiv 117\pmod {51}\implies x\equiv 15\pmod {51} ##.
Now we have ## 51y\equiv 9\pmod {4}\implies 3y\equiv 1\pmod {4}\implies y\equiv 3\pmod {4} ##.
This means ## x=15+51t ## and ## y=3+4s, \forall t, s ##.
Since ## 4(15+51t)+51(3+4s)=9 ##, it follows that ## s=-1-t ##.
Thus ## y=3+4s=3+4(-1-t)=-1-4t ##.
Therefore, ## x=15+51t ## and ## y=-1-4t, \forall t, s ##.
So far so good, except that you should toss the "s" in the last line since we only have one parameter ##t## left.

Theoretically, you must check whether your solution is actually one. You derived necessary conditions for your solution and got a set of possible solutions. Now, we check whether they are sufficient, too.
\begin{align*}
4x+51y= 9 &\Longleftrightarrow 4\cdot (15+51t)+51\cdot (-1-4t)=60-51=9
\end{align*}

This has - strictly speaking - always to be done if the steps of a calculation cannot be reversed, e.g. taking roots or squaring numbers, or if we use congruences. So either we could write ##\Longleftrightarrow ## along every step of a proof, or we deduce solutions and check whether they fulfill our requirement. The latter is usually easier to do.
 
Or notice 51=13(4)-1. From there, move terms ahead and multiply, for the first half. Then you can generalize to all solutions other than 4 , and choose one that is 15(Mod 51).
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top