Solve ## 4x+51y=9: x=15+51t, y=-1-4t ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The Diophantine equation 4x + 51y = 9 has been solved using congruences, revealing that the general solutions are x = 15 + 51t and y = -1 - 4t for any integers t. The greatest common divisor (gcd) of 51 and 4 is 1, confirming that integer solutions exist. The relationship between the parameters s and t was clarified, leading to the conclusion that s can be eliminated from the final solution representation. Verification of the derived solutions against the original equation confirms their validity.

PREREQUISITES
  • Understanding of Diophantine equations
  • Knowledge of congruences and modular arithmetic
  • Familiarity with the concept of greatest common divisor (gcd)
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of Diophantine equations in number theory
  • Learn about modular arithmetic and its applications
  • Explore the Extended Euclidean Algorithm for finding integer solutions
  • Investigate other forms of linear Diophantine equations
USEFUL FOR

Mathematicians, students studying number theory, educators teaching algebra, and anyone interested in solving linear Diophantine equations.

Math100
Messages
817
Reaction score
230
Homework Statement
Using congruences, solve the Diophantine equation below:
## 4x+51y=9 ##.
[Hint: ## 4x\equiv 9\pmod {51} ## gives ## x=15+51t ##, whereas ## 51y\equiv 9\pmod {4} ## gives ## y=3+4s ##. Find the relation between ## s ## and ## t ##.]
Relevant Equations
None.
Consider the Diophantine equation ## 4x+51y=9 ##.
Observe that ## gcd(51, 4)=1 ##.
Then ## 4x\equiv 9\pmod {51}\implies 52x\equiv 117\pmod {51}\implies x\equiv 15\pmod {51} ##.
Now we have ## 51y\equiv 9\pmod {4}\implies 3y\equiv 1\pmod {4}\implies y\equiv 3\pmod {4} ##.
This means ## x=15+51t ## and ## y=3+4s, \forall t, s ##.
Since ## 4(15+51t)+51(3+4s)=9 ##, it follows that ## s=-1-t ##.
Thus ## y=3+4s=3+4(-1-t)=-1-4t ##.
Therefore, ## x=15+51t ## and ## y=-1-4t, \forall t, s ##.
 
  • Like
Likes   Reactions: fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Using congruences, solve the Diophantine equation below:
## 4x+51y=9 ##.
[Hint: ## 4x\equiv 9\pmod {51} ## gives ## x=15+51t ##, whereas ## 51y\equiv 9\pmod {4} ## gives ## y=3+4s ##. Find the relation between ## s ## and ## t ##.]
Relevant Equations:: None.

Consider the Diophantine equation ## 4x+51y=9 ##.
Observe that ## gcd(51, 4)=1 ##.
Then ## 4x\equiv 9\pmod {51}\implies 52x\equiv 117\pmod {51}\implies x\equiv 15\pmod {51} ##.
Now we have ## 51y\equiv 9\pmod {4}\implies 3y\equiv 1\pmod {4}\implies y\equiv 3\pmod {4} ##.
This means ## x=15+51t ## and ## y=3+4s, \forall t, s ##.
Since ## 4(15+51t)+51(3+4s)=9 ##, it follows that ## s=-1-t ##.
Thus ## y=3+4s=3+4(-1-t)=-1-4t ##.
Therefore, ## x=15+51t ## and ## y=-1-4t, \forall t, s ##.
So far so good, except that you should toss the "s" in the last line since we only have one parameter ##t## left.

Theoretically, you must check whether your solution is actually one. You derived necessary conditions for your solution and got a set of possible solutions. Now, we check whether they are sufficient, too.
\begin{align*}
4x+51y= 9 &\Longleftrightarrow 4\cdot (15+51t)+51\cdot (-1-4t)=60-51=9
\end{align*}

This has - strictly speaking - always to be done if the steps of a calculation cannot be reversed, e.g. taking roots or squaring numbers, or if we use congruences. So either we could write ##\Longleftrightarrow ## along every step of a proof, or we deduce solutions and check whether they fulfill our requirement. The latter is usually easier to do.
 
  • Like
Likes   Reactions: Math100
Or notice 51=13(4)-1. From there, move terms ahead and multiply, for the first half. Then you can generalize to all solutions other than 4 , and choose one that is 15(Mod 51).
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K