Solve ## 6x\equiv 15\pmod {21} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The linear congruence equation 6x ≡ 15 (mod 21) has three valid solutions: x ≡ 6 (mod 21), x ≡ 13 (mod 21), and x ≡ 20 (mod 21). The greatest common divisor (gcd) of 6 and 21 is 3, which divides 15, confirming the existence of multiple solutions. The general solution can be expressed as x ≡ (6 + 7t) (mod 21), where t can take values 0, 1, or 2. Therefore, while there are three solutions, they are not unique due to the gcd being greater than 1.

PREREQUISITES
  • Understanding of linear congruences
  • Familiarity with the Euclidean algorithm
  • Knowledge of greatest common divisor (gcd)
  • Basic modular arithmetic
NEXT STEPS
  • Study the properties of linear congruences in number theory
  • Learn about the Extended Euclidean Algorithm for finding inverses
  • Explore applications of modular arithmetic in cryptography
  • Investigate the Chinese Remainder Theorem for solving systems of congruences
USEFUL FOR

Students and professionals in mathematics, particularly those studying number theory, cryptography, or anyone interested in solving modular equations.

Math100
Messages
817
Reaction score
230
Homework Statement
Solve the following linear congruence:
## 6x\equiv 15\pmod {21} ##.
Relevant Equations
None.
Consider the linear congruence ## 6x\equiv 15\pmod {21} ##.
Applying the Euclidean Division yields:
## 21=3\cdot 6+3 ##
## 6=2\cdot 3+0 ##.
Then ## gcd(6, 21)=3 ##.
Since ## 3\mid 15 ##, it follows that the linear congruence ## 6x\equiv 15\pmod {21} ## has
a unique solution modulo ## n ##.
Observe that ## x\equiv (6+\frac{21}{3}t)\pmod {21} ## where ## 0\leq t\leq 2 ##.
Thus ## x\equiv (6+7t)\pmod {21} ##.
Therefore, ## x\equiv 6\pmod {21}, x\equiv 13\pmod {21} ## and ## x\equiv 20\pmod {21} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the following linear congruence:
## 6x\equiv 15\pmod {21} ##.
Relevant Equations:: None.

Consider the linear congruence ## 6x\equiv 15\pmod {21} ##.
Applying the Euclidean Division yields:
## 21=3\cdot 6+3 ##
## 6=2\cdot 3+0 ##.
Then ## gcd(6, 21)=3 ##.
Since ## 3\mid 15 ##, it follows that the linear congruence ## 6x\equiv 15\pmod {21} ## has
a unique solution modulo ## n ##.
You found three solutions, so how can they be unique?
Math100 said:
Observe that ## x\equiv (6+\frac{21}{3}t)\pmod {21} ## where ## 0\leq t\leq 2 ##.
It seems to be right since you have found the correct solutions, but why is this the case?

We have
\begin{align*}
6x\equiv 15 \pmod{21}&\Longrightarrow 21\,|\,(6x-15)=3\cdot (2x-5)\\
&\Longrightarrow 7\,|\,2x-5\\
&\Longrightarrow x=(7s+5)/2 \wedge 0\leq x \leq 20\\
&\Longrightarrow s\in \{1,3,5\}\\
&\Longrightarrow x\in\{6,13,20\}
\end{align*}

How did you get ## x\equiv (6+7t)\pmod {21} ## where ## 0\leq t\leq 2 ##?
Math100 said:
Thus ## x\equiv (6+7t)\pmod {21} ##.
Therefore, ## x\equiv 6\pmod {21}, x\equiv 13\pmod {21} ## and ## x\equiv 20\pmod {21} ##.
 
fresh_42 said:
You found three solutions, so how can they be unique?

It seems to be right since you have found the correct solutions, but why is this the case?

We have
\begin{align*}
6x\equiv 15 \pmod{21}&\Longrightarrow 21\,|\,(6x-15)=3\cdot (2x-5)\\
&\Longrightarrow 7\,|\,2x-5\\
&\Longrightarrow x=(7s+5)/2 \wedge 0\leq x \leq 20\\
&\Longrightarrow s\in \{1,3,5\}\\
&\Longrightarrow x\in\{6,13,20\}
\end{align*}

How did you get ## x\equiv (6+7t)\pmod {21} ## where ## 0\leq t\leq 2 ##?
## x\equiv (x_{0}+\frac{n}{d}t)\pmod {n} ##
## x\equiv (6+\frac{21}{3}t)\pmod {21} ##
 
As for ## 0\leq t\leq 2 ##, I got this because ## gcd(6, 21)=3 ##, so ## t ## must be ## 0\leq t\leq 2 ## or ## 0\leq t<3 ##.
 
Since you claimed that three solutions aren't unique, then is the answer just ## x\equiv 6\pmod {21} ##?
 
Math100 said:
Since you claimed that three solutions aren't unique, then is the answer just ## x\equiv 6\pmod {21} ##?
No, all three are possible solutions.

You only get unique solutions if the greatest common divisor is ##1.## Here we have ##3##. The reason is that ##\operatorname{gcd}(a,b)## can be written as
$$
\operatorname{gcd}(a,b)=s\cdot a+t\cdot b
$$
If we had ##\operatorname{gcd}(a,b)=1,## then ##1\equiv s\cdot a \pmod b## and ##a## can be inverted: ##s\equiv 1/a \pmod b.## Now we could solve all equations ##a\cdot x \equiv c \pmod b## simply by multiplying it with ##s##. Hence
$$
s\cdot (a\cdot x) \equiv (s\cdot a)\cdot x \equiv 1\cdot x \equiv x\equiv s\cdot c \pmod b.
$$

But here we have only the equation ##3=1\cdot 21 - 3\cdot 6## and ##6## cannot be inverted modulo ##21.##
 
  • Like
Likes   Reactions: Math100
But which method is correct? The one you showed me above with ## x=(7s+5)/2\land 0\leq x\leq 20\implies s\in {1, 3, 5}\implies x\in {6, 13, 20} ##, or the one I used?
 
Math100 said:
But which method is correct? The one you showed me above with ## x=(7s+5)/2\land 0\leq x\leq 20\implies s\in {1, 3, 5}\implies x\in {6, 13, 20} ##, or the one I used?
Both are ok. Your only mistake was to call the solution unique. We have three valid solutions so they cannot be unique.
 
  • Like
Likes   Reactions: Math100

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K