MHB Solve a Problem & Impress Friends: Proving a/(b+c) for Integers a, b, c

  • Thread starter Thread starter CONRADDODD
  • Start date Start date
CONRADDODD
Messages
5
Reaction score
0
I'd love to solve this problem and stun a friend...
Prove if a/b and a/c then a/(b+C)
let a,b,c (element of) (integers.)

I'm sure there's a genius that can figure this out.

Thanks!
 
Mathematics news on Phys.org
I take it that "a/b" means "a divides b". Then, if $a$ divides $b$, then there exists an integer $k_1$ such that $b = ak_1$. Similarly, if $a$ divides $c$, then there exists an integer $k_2$ such that $c = ak_2$. Then $b + c = ak_1 + ak_2 = a(k_1 + k_2) = ak_3$ for $k_3 = k_1 + k_2$, and so $a$ divides $b + c$.

More intuitively, if $a$ divides both $b$ and $c$, that means that $b$ and $c$ are both multiples of $a$ (by definition). So their sum must also be a multiple of $a$, and the result follows.​
 
Thanks for the help!
You should have seen the look on his face! Priceless!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top