MHB Solve $a_n>0$ Math Problem for $a_n$ with Given Sequence

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$a_n>0, \,\, for \,\, all \,\, n$

$a_1=1,a_2=3$

$a_{n+2}=\dfrac {(a_{n+1})^6}{(a_n)^9}$

$find:\,\, a_n$
 
Mathematics news on Phys.org
Albert said:
$a_n>0, \,\, for \,\, all \,\, n$

$a_1=1,a_2=3$

$a_{n+2}=\dfrac {(a_{n+1})^6}{(a_n)^9}$

$find:\,\, a_n$

Setting $\displaystyle \lambda_{n} = \ln a_{n}$ You arrive at the difference equation...

$\displaystyle \lambda_{n+2} - 6\ \lambda_{n+1} + 9\ \lambda_{n} = 0, \ \lambda_{1}=0,\ \lambda_{2}= \ln 3\ (1)$

The general solution of (1) is...

$\displaystyle \lambda_{n} = c_{1}\ 3^{n} + c_{2}\ n\ 3^{n}\ (2)$

... where the constant $c_{1}$ and $c_{2}$ can be found from the initial conditions. Once You have the $\lambda_{n}$ then is simply $\displaystyle a_{n} = e^{\lambda_{n}}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Setting $\displaystyle \lambda_{n} = \ln a_{n}$ You arrive at the difference equation...

$\displaystyle \lambda_{n+2} - 6\ \lambda_{n+1} + 9\ \lambda_{n} = 0, \ \lambda_{1}=0,\ \lambda_{2}= \ln 3\ (1)$

The general solution of (1) is...

$\displaystyle \lambda_{n} = c_{1}\ 3^{n} + c_{2}\ n\ 3^{n}\ (2)$

... where the constant $c_{1}$ and $c_{2}$ can be found from the initial conditions. Once You have the $\lambda_{n}$ then is simply $\displaystyle a_{n} = e^{\lambda_{n}}$...

Kind regards

$\chi$ $\sigma$

It's a challenge question...go ahead and finish it on up, my friend! (Tongueout)
 
Albert said:
$a_n>0, \,\, for \,\, all \,\, n$

$a_1=1,a_2=3$

$a_{n+2}=\dfrac {(a_{n+1})^6}{(a_n)^9}$

$find:\,\, a_n$

I recently started with recurrence relations so expect the following to be wrong.
Take logarithm with base 3 on both the sides i.e
$$\log_3 a_{n+2}=6\log_3 a_{n+1}-9\log_3 a_n$$
Define $b_n=\log_3 a_n$ so the above relation is:
$$b_{n+2}=6b_{n+1}-9b_n$$
The characteristic polynomial of the above is $r^2-6r+9=0 \Rightarrow (r-3)^2=0$. Since the characteristic polynomial has a repeated root 3, the solution is of the form:
$$b_n=c_13^n+nc_2 3^n$$
From the initial conditions, we have: $b_1=0$ and $b_2=1$ so we have the following system of linear equation:
$$c_1+c_2=0$$
and
$$c_1+2c_2=\frac{1}{3^2}$$
Solving the above and plugging in $b_n$,
$$b_n=3^{n-2}(n-1)$$
Since $b_n=\log_3 a_n$, hence $a_n=3^{b_n}$
$$\Rightarrow b_n=3^{3^{n-2}(n-1)}$$
$\blacksquare$
 
MarkFL said:
It's a challenge question...go ahead and finish it on up, my friend! (Tongueout)

I apologize for my slovenliness:(...

We are arrived to write... $\lambda_{n} = c_{1}\ 3^{n} + c_{2}\ n\ 3^{n}\ (1)$ ... and because is $\lambda_{1}=0$ and $\lambda_{2} = \ln 3$ we obtain... $\lambda_{n}= \ln 3\ (n-1)\ 3^{n-2}\ (2)$ ... so that is... $\displaystyle a_{n}= e^{\lambda_{n}} = 3\ e^{(n-1)\ 3^{n-2}}\ (3)$

Kind regards

$\chi$ $\sigma$
 
Pranav said:
I recently started with recurrence relations so expect the following to be wrong.
Take logarithm with base 3 on both the sides i.e
$$\log_3 a_{n+2}=6\log_3 a_{n+1}-9\log_3 a_n$$
Define $b_n=\log_3 a_n$ so the above relation is:
$$b_{n+2}=6b_{n+1}-9b_n$$
The characteristic polynomial of the above is $r^2-6r+9=0 \Rightarrow (r-3)^2=0$. Since the characteristic polynomial has a repeated root 3, the solution is of the form:
$$b_n=c_13^n+nc_2 3^n$$
From the initial conditions, we have: $b_1=0$ and $b_2=1$ so we have the following system of linear equation:
$$c_1+c_2=0$$
and
$$c_1+2c_2=\frac{1}{3^2}$$
Solving the above and plugging in $b_n$,
$$b_n=3^{n-2}(n-1)$$
Since $b_n=\log_3 a_n$, hence $a_n=3^{b_n}$
$$\Rightarrow b_n=3^{3^{n-2}(n-1)}$$
$\blacksquare$
you expect the following to be wrong.but unfortunately it is correct
very nice (Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top