Solve $a_n>0$ Math Problem for $a_n$ with Given Sequence

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on solving the recurrence relation defined by the sequence \(a_n\) where \(a_1=1\), \(a_2=3\), and \(a_{n+2}=\dfrac {(a_{n+1})^6}{(a_n)^9}\). The condition \(a_n>0\) for all \(n\) is emphasized. Participants confirm the correctness of the approach to the problem, indicating that the recurrence relation can be solved accurately despite initial doubts about the method.

PREREQUISITES
  • Understanding of recurrence relations
  • Familiarity with mathematical sequences
  • Basic algebraic manipulation skills
  • Knowledge of convergence criteria for sequences
NEXT STEPS
  • Explore advanced techniques in solving recurrence relations
  • Study the properties of sequences and series in mathematics
  • Learn about generating functions as a method for solving recurrences
  • Investigate convergence and divergence of sequences
USEFUL FOR

Mathematics students, educators, and anyone interested in solving complex recurrence relations and understanding their implications in mathematical analysis.

Albert1
Messages
1,221
Reaction score
0
$a_n>0, \,\, for \,\, all \,\, n$

$a_1=1,a_2=3$

$a_{n+2}=\dfrac {(a_{n+1})^6}{(a_n)^9}$

$find:\,\, a_n$
 
Mathematics news on Phys.org
Albert said:
$a_n>0, \,\, for \,\, all \,\, n$

$a_1=1,a_2=3$

$a_{n+2}=\dfrac {(a_{n+1})^6}{(a_n)^9}$

$find:\,\, a_n$

Setting $\displaystyle \lambda_{n} = \ln a_{n}$ You arrive at the difference equation...

$\displaystyle \lambda_{n+2} - 6\ \lambda_{n+1} + 9\ \lambda_{n} = 0, \ \lambda_{1}=0,\ \lambda_{2}= \ln 3\ (1)$

The general solution of (1) is...

$\displaystyle \lambda_{n} = c_{1}\ 3^{n} + c_{2}\ n\ 3^{n}\ (2)$

... where the constant $c_{1}$ and $c_{2}$ can be found from the initial conditions. Once You have the $\lambda_{n}$ then is simply $\displaystyle a_{n} = e^{\lambda_{n}}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Setting $\displaystyle \lambda_{n} = \ln a_{n}$ You arrive at the difference equation...

$\displaystyle \lambda_{n+2} - 6\ \lambda_{n+1} + 9\ \lambda_{n} = 0, \ \lambda_{1}=0,\ \lambda_{2}= \ln 3\ (1)$

The general solution of (1) is...

$\displaystyle \lambda_{n} = c_{1}\ 3^{n} + c_{2}\ n\ 3^{n}\ (2)$

... where the constant $c_{1}$ and $c_{2}$ can be found from the initial conditions. Once You have the $\lambda_{n}$ then is simply $\displaystyle a_{n} = e^{\lambda_{n}}$...

Kind regards

$\chi$ $\sigma$

It's a challenge question...go ahead and finish it on up, my friend! (Tongueout)
 
Albert said:
$a_n>0, \,\, for \,\, all \,\, n$

$a_1=1,a_2=3$

$a_{n+2}=\dfrac {(a_{n+1})^6}{(a_n)^9}$

$find:\,\, a_n$

I recently started with recurrence relations so expect the following to be wrong.
Take logarithm with base 3 on both the sides i.e
$$\log_3 a_{n+2}=6\log_3 a_{n+1}-9\log_3 a_n$$
Define $b_n=\log_3 a_n$ so the above relation is:
$$b_{n+2}=6b_{n+1}-9b_n$$
The characteristic polynomial of the above is $r^2-6r+9=0 \Rightarrow (r-3)^2=0$. Since the characteristic polynomial has a repeated root 3, the solution is of the form:
$$b_n=c_13^n+nc_2 3^n$$
From the initial conditions, we have: $b_1=0$ and $b_2=1$ so we have the following system of linear equation:
$$c_1+c_2=0$$
and
$$c_1+2c_2=\frac{1}{3^2}$$
Solving the above and plugging in $b_n$,
$$b_n=3^{n-2}(n-1)$$
Since $b_n=\log_3 a_n$, hence $a_n=3^{b_n}$
$$\Rightarrow b_n=3^{3^{n-2}(n-1)}$$
$\blacksquare$
 
MarkFL said:
It's a challenge question...go ahead and finish it on up, my friend! (Tongueout)

I apologize for my slovenliness:(...

We are arrived to write... $\lambda_{n} = c_{1}\ 3^{n} + c_{2}\ n\ 3^{n}\ (1)$ ... and because is $\lambda_{1}=0$ and $\lambda_{2} = \ln 3$ we obtain... $\lambda_{n}= \ln 3\ (n-1)\ 3^{n-2}\ (2)$ ... so that is... $\displaystyle a_{n}= e^{\lambda_{n}} = 3\ e^{(n-1)\ 3^{n-2}}\ (3)$

Kind regards

$\chi$ $\sigma$
 
Pranav said:
I recently started with recurrence relations so expect the following to be wrong.
Take logarithm with base 3 on both the sides i.e
$$\log_3 a_{n+2}=6\log_3 a_{n+1}-9\log_3 a_n$$
Define $b_n=\log_3 a_n$ so the above relation is:
$$b_{n+2}=6b_{n+1}-9b_n$$
The characteristic polynomial of the above is $r^2-6r+9=0 \Rightarrow (r-3)^2=0$. Since the characteristic polynomial has a repeated root 3, the solution is of the form:
$$b_n=c_13^n+nc_2 3^n$$
From the initial conditions, we have: $b_1=0$ and $b_2=1$ so we have the following system of linear equation:
$$c_1+c_2=0$$
and
$$c_1+2c_2=\frac{1}{3^2}$$
Solving the above and plugging in $b_n$,
$$b_n=3^{n-2}(n-1)$$
Since $b_n=\log_3 a_n$, hence $a_n=3^{b_n}$
$$\Rightarrow b_n=3^{3^{n-2}(n-1)}$$
$\blacksquare$
you expect the following to be wrong.but unfortunately it is correct
very nice (Yes)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K