MHB Solve Autoregressive Model Problem

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Model
Click For Summary
The discussion revolves around modeling population dynamics in three cities (A, B, and C) using an autoregressive process. The transition probabilities indicate a constant total population, leading to the formulation of a Markov matrix. The eigenvalues of this matrix reveal that the population distribution will stabilize over time, with the first eigenvalue corresponding to the steady-state distribution. The conversation also questions whether the analytical solution can be derived without resorting to least squares methods. Ultimately, the conclusion emphasizes that the population ratios align with the eigenvector associated with the eigenvalue of 1, confirming the constancy of the total population.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote an unsolved problem from another forum (Algebra) posted on January 16th, 2013.

Got the following problem.

In a country you can live in three different citys, A, B and C, the population is constant.

Each year;

70% of the residents in city A stay, 20% move to city B and 10% move to city C
90% of the residents in city B stay, 5% move to city A and 5% move to city C
50% of the residents in city C stay, 45% move to city A and 5% move to city B

I am suppose to explain this as an autoregressive process.
Through some datamining i found that the process is an AR(3) process, with coefficents
2,1 -1.3725 0.2725

My question is, is it possible to solve this analytically, without Least squares trial and error?

I provide an algebraic approach to predict the behaviour in the future.

Denote P_{n}=(a_n,b_n,c_n)^t, where a_n,b_n,c_n are the poblations of A,B,C respectively in the year n. According to the hypothesis:

a_n=0.7a_{n-1}+0.05b_{n-1}+0.45c_{n-1}\\b_n=0.2a_{n-1}+0.9b_{n-1}+0.05c_{n-1}\\c_n=0.1a_{n-1}+0.05b_{n-1}+0.5c_{n-1}

Equivalently

P_n=\begin{bmatrix}{0.7}&{0.05}&{0.45}\\{0.2}&{0.9}&{0.05}\\{0.1}&{0.05}&{0.5}\end{bmatrix}\;P_{n-1}=\dfrac{1}{20}\begin{bmatrix}{70}&{5}&{45}\\{20}&{90}&{5}\\{10}&{5}&{50}\end{bmatrix}\;P_{n-1} =MP_{n-1}

Then, P_n=MP_{n-1}=M^2P_{n-2}=\ldots=M^nP_0

As M is a Markov matrix, has the eigenvalue \lambda_1=1 and easily we can find the rest: \lambda_2=(11+\sqrt{3})/20 and \lambda_3=(11-\sqrt{3})/20. These eigenvalues are all simple, so M is diagonalizable in \mathbb{R}. If Q\in\mathbb{R}^{3\times 3} satisfies Q^{-1}AQ=D=\mbox{diag }(\lambda_1,\lambda_2,\lambda_3), then P_n=QD^nQ^{-1}P_0. Taking limits in both sides an considering that |\lambda_2|<1 and |\lambda_3|<1:

P_{\infty}:=\displaystyle\lim_{n \to \infty} P_n=Q\;(\displaystyle\lim_{n \to \infty}D^n)\;Q^{-1}P_0=Q\;\begin{bmatrix}{1}&{0}&{0}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix}\;Q^{-1}P_0

Not that for computing P_{\infty} we only need the first column (an eigenvalue v_1 associated to \lambda_1) of Q and the first row w_{1} of Q^{-1}. We get v_1=(19,42,8)^t and w_{1}=(1/69)(1,1,1). So,
$P_{\infty}=\begin{bmatrix}a_{\infty} \\ b_{\infty}\\ c_{\infty}\end{bmatrix}=$ $\dfrac{1}{69}\begin{bmatrix}{19}&{*}&{*} \\ {42}&{*}&{*} \\ {8}&{*}&{*}\end{bmatrix}\;\begin{bmatrix}{1}&{0}&{0} \\ {0}&{0}&{0} \\ {0}&{0}&{0}\end{bmatrix}\;$ $\begin{bmatrix}{1}&{1}&{1}\\{*}&{*}&{*}\\{*}&{*}&{*}\end{bmatrix}\begin{bmatrix}a_{0}\\b_{0}\\c_{0}\end{bmatrix}=$ $\dfrac{1}{69}\begin{bmatrix}{19(a_0+b_0+c_0)}\\{42(a_0+b_0+c_0)}\\{8(a_0+b_0+c_0)}\end{bmatrix}$

which represents the tendency of the poblations of A,B and C as n\to \infty.
 
Physics news on Phys.org
Hmm, since it is given that the population remains constant, doesn't it suffice that:
$P_1 = P_0$​

That is,
$MP_0 = P_0$​

So the population ratios correspond to the eigenvector belonging to eigenvalue 1?
 
ILikeSerena said:
Hmm, since it is given that the population remains constant, doesn't it suffice that: $P_1 = P_0$

Remains constant means $a_n+b_n+c_n=a_{n-1}+b_{n-1}+c_{n-1}$ for all $n\geq 1$, different from $(a_n,b_n,c_n)=(a_{n-1}b_{n-1},c_{n-1})$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K