MHB Solve Binominal Form (4x+3)^n | Binomial Coefficients

AI Thread Summary
The discussion focuses on the binomial expansion of (4x + 3)^n, specifically examining the coefficients of the x^3 and x^4 terms, which are equal for n = 6. The coefficients are derived from the binomial theorem and equated, leading to the equation 3 {n choose 3} = 4 {n choose 4}. Solving this equation reveals that n must equal 6. The coefficients for both terms at n = 6 are confirmed to be 34560.
Alexstrasuz1
Messages
20
Reaction score
0
In solved binominal form (4x+3)^n has two members x^4 and x^3 whose binomial coefficients are equal.
I'm kinda good in solving binomial coefficient, but I never stumbled to something like this
 
Mathematics news on Phys.org
Alexstrasuz said:
In solved binominal form (4x+3)^n has two members x^4 and x^3 whose binomial coefficients are equal.
I'm kinda good in solving binomial coefficient, but I never stumbled to something like this

Hello,

take Pascal's triangle of binomial coefficient and look (for n > 4)
View attachment 3393

for those neighbouring coefficients which are in the relation 3 to 4.

The first hit is for n = 6.

Expanding $$(4x+3)^6$$ you'll find that the coefficients in question are 34560.
 

Attachments

  • nauspasc3eck.jpg
    nauspasc3eck.jpg
    7.7 KB · Views: 115
Alexstrasuz said:
In solved binominal form (4x+3)^n has two members x^4 and x^3 whose binomial coefficients are equal.
I'm kinda good in solving binomial coefficient, but I never stumbled to something like this
The binomial expansion of
[math](4x + 3)^n = \sum_{i = 0}^n {n \choose i} (4x)^i \cdot 3^{n- i}[/math]

So the coefficient of the [math]x^3[/math] term (which implies i = 3) is
[math]{n \choose 3}4^3 \cdot 3^{n - 3}[/math]

and the coefficient of the [math]x^4[/math] term (which implies i + 1 = 3 + 1) is
[math]{n \choose 4} 4^4 \cdot 3^{n - 4}[/math]

Equating these:
[math]{n \choose 3}4^3 \cdot 3^{n - 3} = {n \choose 4} 4^4 \cdot 3^{n - 4}[/math]

[math]3 {n \choose 3} = 4 {n \choose 4}[/math]

[math]3 \cdot \frac{n!}{3! (n - 3)!} = 4 \cdot \frac{n!}{4! (n - 4)!}[/math]

[math]3 \cdot \frac{1}{n - 3} = 1[/math]

[math]3 = n - 3[/math]

[math]n = 6[/math]

And you can now calculate that the coefficient is the same as earboth told you, 34560.

-Dan
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top