Solve by separation of variables

Click For Summary
SUMMARY

The discussion focuses on solving the differential equation \(\frac{dy}{dx}=\frac{xy+3x-y-3}{xy-2x+4y-8}\) using the method of separation of variables. Participants emphasize the importance of factoring both the numerator and denominator, leading to the expression \(\frac{(y-2)}{(y+3)} dy = \frac{(x-1)}{(x+4)} dx\). The integration process is clarified through the manipulation of the left side into the form \(1-\frac{5}{y+3}\), which simplifies the integration task. Polynomial division is also discussed as an alternative method for understanding the transformation of the equation.

PREREQUISITES
  • Understanding of differential equations
  • Familiarity with separation of variables technique
  • Knowledge of polynomial factoring
  • Basic integration skills
NEXT STEPS
  • Practice solving differential equations using separation of variables
  • Explore polynomial division techniques in algebra
  • Learn advanced integration techniques, including partial fractions
  • Study the applications of differential equations in real-world scenarios
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and differential equations, as well as educators looking for effective teaching methods for these concepts.

find_the_fun
Messages
147
Reaction score
0
Solve given differential equation by separation of variables

[math]\frac{dy}{dx}=\frac{xy+3x-y-3}{xy-2x+4y-8}[/math]

So separate x and y terms

[math](xy-2x+4y-8) dy = (xy+3x-y-3)[/math] ugh I'm stuck:(
 
Physics news on Phys.org
Re: solve by separation of variables

You want to factor the numerator and denominator of the right side, then you may separate variables.
 
Re: solve by separation of variables

I can factor to [math]\frac{dy}{dx}=\frac{(x-1)(y+3)}{(x+4)(y-2)}[/math] and rewriting gives [math]\frac{(y-2)}{(y+3)} dy = \frac{(x-1)}{(x+4)} dx[/math]. Am I on the right track? I don't know how to integrate this.
 
Re: solve by separation of variables

Yes, you are correct. For the left side, consider:

$$\frac{y-2}{y+3}=\frac{y+3-5}{y+3}=1-\frac{5}{y+3}$$

Do the same kind of thing on the right side, and you should be able to integrate now.
 
Re: solve by separation of variables

MarkFL said:
Yes, you are correct. For the left side, consider:

$$\frac{y-2}{y+3}=\frac{y+3-5}{y+3}=1-\frac{5}{y+3}$$

Do the same kind of thing on the right side, and you should be able to integrate now.

Is an alternative to [math]\frac{y+3-5}{y+3}[/math] doing polynomial division and seeing y+3 goes into y-2 once with a remainder of 5? I'm not super clear on the thought process of getting [math]1-\frac{5}{y+3}$$.
 
Re: solve by separation of variables

find_the_fun said:
Is an alternative to [math]\frac{y+3-5}{y+3}[/math] doing polynomial division and seeing y+3 goes into y-2 once with a remainder of 5? I'm not super clear on the thought process of getting [math]1-\frac{5}{y+3}[/math].

Yes, although the remainder is actually -5, but then you get the same result. I just find it simpler to do as I did above. To make what I did more clear, consider:

$$\frac{y-2}{y+3}=\frac{(y+3)+(-2-3)}{y+3}=\frac{y+3}{y+3}-\frac{5}{y+3}=1-\frac{5}{y+3}$$
 

Similar threads

Replies
18
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K