MHB Solve Calculus Limits w/ Sine Function: Answers to Hey's Questions

AI Thread Summary
To solve calculus limits involving sine functions, the key result is that lim x->0 (sin(x))/x = 1. For limits of the form lim x->0 (sin(ax))/(bx), the solution simplifies to a/b. Thus, lim x->0 (sin(2x))/6x equals 1/3, and for lim x->0 (sin(7x))/(sin(5x)), the result is 7/5. These results are derived using substitution and limit properties. Understanding these principles allows for efficient calculation of similar limits.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

How do I solve calculus limits containing sin?

Lim x->0 (sin(x))/x

Lim x->0 (sin(2x))/6x

Lim x->0 (sin(7x))/(sin(5x))

I'm completely stuck on how to do these. Thank you for all your help! :)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Hey,

For these problems, we may rely on the following result:

$$\lim_{x\to0}\frac{\sin(x)}{x}=1$$

This is the answer to the first problem.

For the first two problems, let's develop a general formula to handle limits of the type:

$$\lim_{x\to0}\frac{\sin(ax)}{bx}$$

where $a$ and $b$ are non-zero real constants.

If we multiply the expression by $$1=\frac{a/b}{a/b}$$ and use the limit property:

$$\lim_{x\to c}k\cdot f(x)=k\cdot\lim_{x\to c}f(x)$$ where $k$ is a real constant

Then our limit becomes:

$$\frac{a}{b}\lim_{x\to0}\frac{\sin(ax)}{ax}$$

Now, using the substitution:

$$u=ax$$

and observing:

$$x\to0$$ implies $$u\to0$$

we may write:

$$\frac{a}{b}\lim_{u\to0}\frac{\sin(u)}{u}=\frac{a}{b}$$

Hence, we have found:

$$\lim_{x\to0}\frac{\sin(ax)}{bx}=\frac{a}{b}$$

And so the second limit is:

$$\lim_{x\to0}\frac{\sin(2x)}{6x}=\frac{2}{6}=\frac{1}{3}$$

For the third problem, let's consider the following limit:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}$$

We may then write:

$$\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b}\frac{\frac{\sin(ax)}{ax}}{\frac{\sin(bx)}{bx}}$$

and making use of the limit property:

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$$

we may write:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b} \cdot\frac{\lim\limits_{x\to0}\frac{\sin(ax)}{ax}}{\lim\limits_{x\to0}\frac{\sin(bx)}{bx}}$$

And the using the substitutions $$u=ax,\,v=bx$$ we have:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b} \cdot\frac{\lim\limits_{u\to0}\frac{\sin(u)}{u}}{ \lim\limits_{v\to0}\frac{\sin(v)}{v}}= \frac{a}{b}\cdot\frac{1}{1}$$

And so we may write:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b}$$

And so the third limit is:

$$\lim_{x\to0}\frac{\sin(7x)}{\sin(5x)}=\frac{7}{5}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top