MHB Solve Calculus Limits w/ Sine Function: Answers to Hey's Questions

Click For Summary
To solve calculus limits involving sine functions, the key result is that lim x->0 (sin(x))/x = 1. For limits of the form lim x->0 (sin(ax))/(bx), the solution simplifies to a/b. Thus, lim x->0 (sin(2x))/6x equals 1/3, and for lim x->0 (sin(7x))/(sin(5x)), the result is 7/5. These results are derived using substitution and limit properties. Understanding these principles allows for efficient calculation of similar limits.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

How do I solve calculus limits containing sin?

Lim x->0 (sin(x))/x

Lim x->0 (sin(2x))/6x

Lim x->0 (sin(7x))/(sin(5x))

I'm completely stuck on how to do these. Thank you for all your help! :)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Hey,

For these problems, we may rely on the following result:

$$\lim_{x\to0}\frac{\sin(x)}{x}=1$$

This is the answer to the first problem.

For the first two problems, let's develop a general formula to handle limits of the type:

$$\lim_{x\to0}\frac{\sin(ax)}{bx}$$

where $a$ and $b$ are non-zero real constants.

If we multiply the expression by $$1=\frac{a/b}{a/b}$$ and use the limit property:

$$\lim_{x\to c}k\cdot f(x)=k\cdot\lim_{x\to c}f(x)$$ where $k$ is a real constant

Then our limit becomes:

$$\frac{a}{b}\lim_{x\to0}\frac{\sin(ax)}{ax}$$

Now, using the substitution:

$$u=ax$$

and observing:

$$x\to0$$ implies $$u\to0$$

we may write:

$$\frac{a}{b}\lim_{u\to0}\frac{\sin(u)}{u}=\frac{a}{b}$$

Hence, we have found:

$$\lim_{x\to0}\frac{\sin(ax)}{bx}=\frac{a}{b}$$

And so the second limit is:

$$\lim_{x\to0}\frac{\sin(2x)}{6x}=\frac{2}{6}=\frac{1}{3}$$

For the third problem, let's consider the following limit:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}$$

We may then write:

$$\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b}\frac{\frac{\sin(ax)}{ax}}{\frac{\sin(bx)}{bx}}$$

and making use of the limit property:

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$$

we may write:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b} \cdot\frac{\lim\limits_{x\to0}\frac{\sin(ax)}{ax}}{\lim\limits_{x\to0}\frac{\sin(bx)}{bx}}$$

And the using the substitutions $$u=ax,\,v=bx$$ we have:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b} \cdot\frac{\lim\limits_{u\to0}\frac{\sin(u)}{u}}{ \lim\limits_{v\to0}\frac{\sin(v)}{v}}= \frac{a}{b}\cdot\frac{1}{1}$$

And so we may write:

$$\lim_{x\to0}\frac{\sin(ax)}{\sin(bx)}=\frac{a}{b}$$

And so the third limit is:

$$\lim_{x\to0}\frac{\sin(7x)}{\sin(5x)}=\frac{7}{5}$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
16K
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K