MHB Solve Degree 2 Polynomial: 10.2 DE Notation Explained

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Notation
Click For Summary
The discussion centers on understanding a degree 2 polynomial transformation defined as T(p) = 2p(x) + xp'(x) + x^2 p''(x). Participants express confusion regarding the notation and the example provided, particularly the mention of polynomials of degree less than 2 while discussing a degree 2 polynomial. They compute T for various polynomial forms, arriving at results for T(1), T(x), and T(x^2), with corrections noted throughout. The conversation also touches on demonstrating that T is a linear transformation, emphasizing the importance of grasping the underlying concepts. Overall, the participants are seeking clarity and support to better understand the polynomial transformation and its applications.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 8834

in (3) they say any polynomial of degree less than 2, yet the example is degree 2 ?

ok this is due tomro, so hopefully I can get a handle on it today

I think this is familiar, just is the notation is stumping me.

really appreciate any insight...

did a screenshot to avoid typos:cool:
 
Last edited:
Physics news on Phys.org
We define the application
$T:P_2\rightarrow P_2$
by
$T(p)=2p(x)+xp'(x)+x^2 p''(x)$
Compute
$T(x^2),T(x),T(1) \textit{ and } T(ax^2+bx+c)$

ok if I just plug in then

$T(1)=2(1)+x(1)'+x^2(1)''=2+0+0=0$
$T(x)=2(x)+x(x)'+x^2(x)''=2x+x+0=3x$
$T(x^2)=2(x^2)+x(x^2)'+x^2(x^2)''=2x^2+2x+4$

kinda maybe...
 
$T(1)=2(1)+x(1)'+x^2(1)''=2+0+0=\color{red}{2}$

$T(x^2)=2(x^2)+x(x^2)'+x^2(x^2)''=\color{red}{2(x^2)+x(2x)+x^2(2)=2x^2+2x^2+2x^2=6x^2}$
 
$T(1)=2(1)+x(1)'+x^2(1)''=2+0+0=\color{red}{2}$

$T(x)=2(x)+x(x)'+x^2(x)''=2x+x+0=\color{red}{3x}$

$T(x^2)=2(x^2)+x(x^2)'+x^2(x^2)''=2(x^2)+x(2x)+x^2(2)=2x^2+2x^2+2x^2=\color{red}{6x^2}$

$T(ax^2+bx+c)=2(ax^2+bx+c)+x(ax^2+bx+c)'+x^2(ax^2+bx+c)''$
$=2ax^2+2bx+2c+2ax^2+bx+0+2ax^2+0+0=\color{red}{6ax^2+3bx+2c}$

just seeing if this is launch ready...
 
karush said:
$T(1)=2(1)+x(1)'+x^2(1)''=2+0+0=\color{red}{2}$

$T(x)=2(x)+x(x)'+x^2(x)''=2x+x+0=\color{red}{3x}$

$T(x^2)=2(x^2)+x(x^2)'+x^2(x^2)''=2(x^2)+x(2x)+x^2(2)=2x^2+2x^2+2x^2=\color{red}{6x^2}$

$T(ax^2+bx+c)=2(ax^2+bx+c)+x(ax^2+bx+c)'+x^2(ax^2+bx+c)''$
$=2ax^2+2bx+2c+2ax^2+bx+0+2ax^2+0+0=\color{red}{6ax^2+3bx+2c}$

just seeing if this is launch ready...
Looks good to me!

-Dan
 
ok I think this is the matrix (not sure what $$ T(ax^2+bx+c)$$ would be used for

$\left[\begin{array}{ccc}2&0&0\\0&3&0\\0&0&6 \end{array}\right]$
 
karush said:
ok I think this is the matrix (not sure what $$ T(ax^2+bx+c)$$ would be used for

$\left[\begin{array}{ccc}2&0&0\\0&3&0\\0&0&6 \end{array}\right]$
Okay, so what's next? (Did you do part 2 yet?)

-Dan
 
Show that T is a linear Transformation..
Ok well I presume the next step would be

$$\displaystyle\vec{x}
=\left[\begin{array}{ccc}2\\0\\0 \end{array}\right]
\quad \vec{y}=
=\left[\begin{array}{ccc}0\\3\\0 \end{array}\right]
\quad \vec{z}=
=\left[\begin{array}{ccc}0\\0\\6 \end{array}\right]$$
 
  • #10
for $T(p) = 2p + xp' + x^2p''$ ...

(1) show $T(p_1 + p_2) = T(p_1)+T(p_2)$

$T(p_1+p_2) = 2(p_1 + p_2) + x(p_1+p_2)' + x^2(p_1+p_2)'' = 2p_1+2p_2+xp_1'+xp_2'+x^2p_1''+x^2p_2'' = (2p_1+xp_1'+x^2p_1'')+(2p_2+xp_2'+x^2p_2'') = T(p_1) + T(p_2)$

now, you show part (2) ... that $T(\alpha p) = \alpha T(p)$ for any scalar $\alpha$.
 
  • #11
ok, sorry I had to abandon this one and move on
I was doing fine in this class until I hit this now I'm worried about the rest of it.
 
  • #12
karush said:
ok, sorry I had to abandon this one and move on
I was doing fine in this class until I hit this now I'm worried about the rest of it.
I'm certainly not expert in this topic myself but I think you are giving up too easily. Try to find a simpler example. This isn't too bad but you need to spend some time with the examples to get it down. As all the "advanced" Math that I know uses linear differential operators the time spent will be well worth the effort.

-Dan
 
  • #13
I agree I'm looking at examples now
Have such hard time in class because my hearing is really bad and board is hard to read
so mostly read pdfs and mhb.

W|A and wikipedia are awful to read
 

Similar threads

Replies
9
Views
3K
Replies
1
Views
1K
Replies
18
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K