theakdad
- 210
- 0
I have a question why is $$\frac{2x^2-1}{x^2+1}$$ equal to $$2-\frac{3}{x^2+1}$$ ??
Last edited:
\begin{aligned}wishmaster said:U have a question why is $$\frac{2x^2-1}{x^2+1}$$ equal to $$2-\frac{3}{x^2+1}$$ ??
I like Serena said:\begin{aligned}
\frac{2x^2-1}{x^2+1}
&= \frac{2x^2 + 2 - 3}{x^2+1} \\
&= \frac{2(x^2 + 1) - 3}{x^2+1} \\
&= \frac{2(x^2 + 1)}{x^2+1} - \frac 3{x^2+1}\\
&= 2-\frac{3}{x^2+1} \\
\end{aligned}
wishmaster said:thank you!
Is this the only way to caclulate it?
Are you familiar with Long Division?\text{Why is }\,\frac{2x^2-1}{x^2+1}\,\text{ equal to }\,2-\frac{3}{x^2+1}\,?
Thank you all for the help! I have studied those kind of problems,so now i know how to do it!soroban said:Hello, wishmaster!
Are you familiar with Long Division?
. . \begin{array}{cccccc}<br /> &&&& 2 \\<br /> && --&--&-- \\<br /> x^2+1 & | & 2x^2 &-&1 \\<br /> && 2x^2 &+& 2 \\<br /> && --&--&-- \\<br /> &&& - & 3 \end{array}Therefore: .\frac{2x^2-1}{x^2+1} \;\;=\;\;2 - \frac{3}{x^2+1}