MHB Solve for Rational Term: 2x^2-1 Over x^2+1

  • Thread starter Thread starter theakdad
  • Start date Start date
  • Tags Tags
    Rational Term
theakdad
Messages
210
Reaction score
0
I have a question why is $$\frac{2x^2-1}{x^2+1}$$ equal to $$2-\frac{3}{x^2+1}$$ ??
 
Last edited:
Mathematics news on Phys.org
wishmaster said:
U have a question why is $$\frac{2x^2-1}{x^2+1}$$ equal to $$2-\frac{3}{x^2+1}$$ ??
\begin{aligned}
\frac{2x^2-1}{x^2+1}
&= \frac{2x^2 + 2 - 3}{x^2+1} \\
&= \frac{2(x^2 + 1) - 3}{x^2+1} \\
&= \frac{2(x^2 + 1)}{x^2+1} - \frac 3{x^2+1}\\
&= 2-\frac{3}{x^2+1} \\
\end{aligned}
 
I like Serena said:
\begin{aligned}
\frac{2x^2-1}{x^2+1}
&= \frac{2x^2 + 2 - 3}{x^2+1} \\
&= \frac{2(x^2 + 1) - 3}{x^2+1} \\
&= \frac{2(x^2 + 1)}{x^2+1} - \frac 3{x^2+1}\\
&= 2-\frac{3}{x^2+1} \\
\end{aligned}

thank you!

Is this the only way to caclulate it?
 
wishmaster said:
thank you!

Is this the only way to caclulate it?

It is similar to calculating:
\begin{aligned}
\frac 7 2
&= \frac {3\cdot 2 + 1}{2} \\
&= \frac {3\cdot 2} 2 + \frac{1}{2} \\
&= 3 + \frac 1 2
\end{aligned}
Just with more complicated expressions.Alternatively, you can say that if you divide $7$ by $2$, you get $3$ with a remainder of $7 - 3 \cdot 2 = 1$.
That is, $$\frac 7 2 = 3 + \frac 1 2$$.Similarly, you can say that if you divide $2x^2-1$ by $x^2 +1$, you get $2$, because the coefficient of $x^2$ is $2$.

The remainder is then $(2x^2 - 1) - 2(x^2+1) = 2x^2 - 1 - 2x^2 - 2 = -3$.
So
$$\frac{2x^2-1}{x^2+1} = 2 + \frac {-3}{x^2+1}$$

Note that this "other" method is really the same thing.
 
Hello, wishmaster!

\text{Why is }\,\frac{2x^2-1}{x^2+1}\,\text{ equal to }\,2-\frac{3}{x^2+1}\,?
Are you familiar with Long Division?

. . \begin{array}{cccccc}<br /> &amp;&amp;&amp;&amp; 2 \\<br /> &amp;&amp; --&amp;--&amp;-- \\<br /> x^2+1 &amp; | &amp; 2x^2 &amp;-&amp;1 \\<br /> &amp;&amp; 2x^2 &amp;+&amp; 2 \\<br /> &amp;&amp; --&amp;--&amp;-- \\<br /> &amp;&amp;&amp; - &amp; 3 \end{array}Therefore: .\frac{2x^2-1}{x^2+1} \;\;=\;\;2 - \frac{3}{x^2+1}
 
soroban said:
Hello, wishmaster!


Are you familiar with Long Division?

. . \begin{array}{cccccc}<br /> &amp;&amp;&amp;&amp; 2 \\<br /> &amp;&amp; --&amp;--&amp;-- \\<br /> x^2+1 &amp; | &amp; 2x^2 &amp;-&amp;1 \\<br /> &amp;&amp; 2x^2 &amp;+&amp; 2 \\<br /> &amp;&amp; --&amp;--&amp;-- \\<br /> &amp;&amp;&amp; - &amp; 3 \end{array}Therefore: .\frac{2x^2-1}{x^2+1} \;\;=\;\;2 - \frac{3}{x^2+1}
Thank you all for the help! I have studied those kind of problems,so now i know how to do it!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top