MHB Solve for x and y When (x+$\sqrt {x^2+1})\times (y+\sqrt {y^2+4})=7$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Value
Albert1
Messages
1,221
Reaction score
0
$if \,\, (x+\sqrt {x^2+1})\times (y+\sqrt {y^2+4})=7$

$find: \,\, x\sqrt {y^2+4}+ y\sqrt {x^2+1}=?$
 
Mathematics news on Phys.org
My attempt:
Let $x + \sqrt{x^2+1}$ take on the value $\alpha$ (note that $\alpha > 0$ for all $x$) and solve the given equation for $y$: \[\alpha (y+\sqrt{y^2+4})=7 \Rightarrow y = \frac{7}{2\alpha }-\frac{2\alpha }{7}\]In order to facilitate the algebra let $\beta = \frac{7}{2\alpha } > 0$, for all $x$.We are looking for the value of the sum: $x\sqrt{y^2+4}+y\sqrt{x^2+1}$. Elaborating on each term:(i). \[x\sqrt{y^2+4} = x\sqrt{\left ( \beta -\frac{1}{\beta } \right )^2+4}=x\sqrt{\left ( \beta +\frac{1}{\beta } \right )^2}= x\left ( \beta +\frac{1}{\beta } \right )\]
(ii). \[y\sqrt{x^2+1} = y(\alpha -x)=\left (\beta -\frac{1}{\beta } \right )\left ( \alpha -x \right )\]Summing the terms:

\[x\sqrt{y^2+4}+y\sqrt{x^2+1} =x\left ( \beta +\frac{1}{\beta} \right )+\left (\beta -\frac{1}{\beta} \right )\left ( \alpha -x \right )\]\[=\alpha \beta +\frac{1}{\beta }\left ( 2x-\alpha \right )= \frac{7}{2}+\frac{2}{7}(x+\sqrt{x^2+1})(x-\sqrt{x^2+1}) = \frac{7}{2}-\frac{2}{7} = \frac{45}{14}.\]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K