Let $x + \sqrt{x^2+1}$ take on the value $\alpha$ (note that $\alpha > 0$ for all $x$) and solve the given equation for $y$: \[\alpha (y+\sqrt{y^2+4})=7 \Rightarrow y = \frac{7}{2\alpha }-\frac{2\alpha }{7}\]In order to facilitate the algebra let $\beta = \frac{7}{2\alpha } > 0$, for all $x$.We are looking for the value of the sum: $x\sqrt{y^2+4}+y\sqrt{x^2+1}$. Elaborating on each term:(i). \[x\sqrt{y^2+4} = x\sqrt{\left ( \beta -\frac{1}{\beta } \right )^2+4}=x\sqrt{\left ( \beta +\frac{1}{\beta } \right )^2}= x\left ( \beta +\frac{1}{\beta } \right )\]
(ii). \[y\sqrt{x^2+1} = y(\alpha -x)=\left (\beta -\frac{1}{\beta } \right )\left ( \alpha -x \right )\]Summing the terms: