MHB Solve for X | Math Problem | Paul's Question

  • Thread starter Thread starter Jones1812
  • Start date Start date
  • Tags Tags
    Variables
AI Thread Summary
Paul is seeking help to solve the equation (0.149/(18 - 0.1x - 0.05n)^2) - (44.5/x^2) = 0 for the variable x. Initially, there was confusion as the expression was presented without an equation. After clarification, the expression was correctly set to equal zero. The solution process involves substituting constants and simplifying the equation, leading to two potential solutions for x based on the signs of the terms involved. The final expressions for x are x = (b - dn) / (√(a/e) + c) and x = (dn - b) / (√(a/e) - c), depending on the sign assumptions.
Jones1812
Messages
3
Reaction score
0
Hi, my name is Paul and I'm new to this forum. I'm having a math problem that I'm unable to find a solution for it at all, i have tried many solutions but unable to find the x
(0.149/(18 - 0.1x - 0.05n)^2) - (44.5/x^2)
The task is to find the variable x
Thanks a lot, your help will mean a lot to me.
 
Mathematics news on Phys.org
what you have posted is an expression in two variables, not an equation

does $\dfrac{0.149}{(18 - 0.1x - 0.05n)^2} - \dfrac{44.5}{x^2} = \text{ anything ?}$
 
skeeter said:
what you have posted is an expression in two variables, not an equation

does $\dfrac{0.149}{(18 - 0.1x - 0.05n)^2} - \dfrac{44.5}{x^2} = \text{ anything ?}$
I'm so so so sorry for the mistake, the above expression is equal to 0.
 
$\dfrac{0.149}{(18 - 0.1x - 0.05n)^2} - \dfrac{44.5}{x^2} = 0$

replacing the constants with $a,b,c,d, e$ to make the algebra easier to follow ...

$\dfrac{a}{(b - cx - dn)^2} - \dfrac{e}{x^2} = 0$

$\dfrac{a}{(b - cx - dn)^2} = \dfrac{e}{x^2}$

$\dfrac{\sqrt{a}}{|b-cx-dn|} = \dfrac{\sqrt{e}}{|x|}$

assuming both $(b-cx-dn)$ and $x$ are same-signed (both positive or both negative) ...

$\dfrac{\sqrt{a}}{b-cx-dn} = \dfrac{\sqrt{e}}{x}$

$x\sqrt{\dfrac{a}{e}} = b-cx-dn$

$x\sqrt{\dfrac{a}{e}}+cx = b-dn$

$x\left(\sqrt{\dfrac{a}{e}} + c \right) = b-dn$

$x = \dfrac{b-dn}{\sqrt{\dfrac{a}{e}} + c}$

assuming $(b-cx-dn)$ and $x$ are different signed (one positive, the other negative) ...

$\dfrac{\sqrt{a}}{dn+cx-b} = \dfrac{\sqrt{e}}{x}$

$x\sqrt{\dfrac{a}{e}} = dn+cx-b$

$x\sqrt{\dfrac{a}{e}}-cx = dn-b$

$x\left(\sqrt{\dfrac{a}{e}} - c \right) = dn-b$

$x = \dfrac{dn-b}{\sqrt{\dfrac{a}{e}} - c}$Hope this works for you ... if I erred somewhere, I'm sure someone will jump on this thread and point out the mistake.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top