MHB Solve Int. xe^xlnx Difficult Integral

  • Thread starter Thread starter Maged Saeed
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral $\int xe^x \ln x \, dx$ can be evaluated using integration by parts. The result is $(x-1)e^x \ln x - \int \frac{x-1}{x} e^x \, dx$. This simplifies further to $(x-1)e^x \ln x - e^x + \text{Ei}(x) + c$, where $\text{Ei}(x)$ represents the Exponential Integral Function. The discussion highlights the steps involved in the integration process and the final expression for the integral. Understanding these steps is crucial for solving similar integrals effectively.
Maged Saeed
Messages
123
Reaction score
3
Can anyone help me Evaluating this integral!
$$\int xe^xlnxdx$$
 
Physics news on Phys.org
Maged Saeed said:
Can anyone help me Evaluating this integral!
$$\int xe^xlnxdx$$

Integrating by parts You obtain...

$\displaystyle \int x\ e^x\ \ln x\ dx = (x-1)\ e^{x}\ \ln x - \int \frac{x-1}{x}\ e^{x}\ dx = (x-1)\ e^{x}\ \ln x - e^{x} + \text{Ei}\ (x) + c\ (1)$

... where $\text{Ei} (x)$ is the 'Exponential Integral Function'...

Kind regards

$\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K