MHB Solve ODE: Break into System of ODEs

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Ode
Dustinsfl
Messages
2,217
Reaction score
5
Is there a way to break this up into a system of ODEs?
$$
L\ddot{\theta} + \dot{x}\dot{\theta} + \ddot{x}\theta = 0
$$
 
Physics news on Phys.org
It's a little unusual that you have a single second-order ODE in two independent variables, but you could just do this:
\begin{align*}
x_{1}&=x \\
x_{2}&= \dot{x} \\
y_{1}&= \theta \\
y_{2}&= \dot{ \theta} \\
0&=L \dot{y}_{2}+x_{2} y_{2}+ \dot{x}_{2} y_{1}.
\end{align*}

There is no $x$ in the original ODE, so you could theoretically integrate that once immediately by essentially leaving out the first equation.
 
dwsmith said:
Is there a way to break this up into a system of ODEs?
$$
L\ddot{\theta} + \dot{x}\dot{\theta} + \ddot{x}\theta = 0
$$
Notice that $\dot{x}\dot{\theta} + \ddot{x}\theta = \frac d{dt}(\dot{x}\theta)$, so (assuming that $L$ is a constant) the equation can be written $\frac d{dt}(L\dot{\theta} +\dot{x}\theta) = 0$. You can integrate this once, to get $L\dot{\theta} +\dot{x}\theta = $ const. But you still have the situation of two dependent variables and only one equation, so I don't see how you can go beyond there without further information.
 
Opalg said:
Notice that $\dot{x}\dot{\theta} + \ddot{x}\theta = \frac d{dt}(\dot{x}\theta)$, so (assuming that $L$ is a constant) the equation can be written $\frac d{dt}(L\dot{\theta} +\dot{x}\theta) = 0$. You can integrate this once, to get $L\dot{\theta} +\dot{x}\theta = $ const. But you still have the situation of two dependent variables and only one equation, so I don't see how you can go beyond there without further information.

I know that acceleration is positive and constant and velocity is positive. Does that offer enough information?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top