Solve the equation cos^8θ+sin^8θ−2(1−cos^2θsin^2θ)^2+1=0

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary
SUMMARY

The equation cos8θ + sin8θ − 2(1 − cos2θ sin2θ)2 + 1 = 0 is satisfied for all values of θ. By substituting x = cos2θ, the equation simplifies to 2x(x − 1)(x2 − x + 1) = 0, revealing that the only real solutions are x = 0 and x = 1. These correspond to cosθ = 0 and cosθ = ±1, leading to the conclusion that θ = nπ/2, where n is an integer. The discussion also highlights that the equation ultimately reduces to a tautology, confirming its validity for all θ.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with polynomial equations
  • Knowledge of substitution methods in algebra
  • Basic grasp of real numbers and their properties
NEXT STEPS
  • Study trigonometric identities and their applications
  • Learn about polynomial factorization techniques
  • Explore the implications of tautologies in mathematical proofs
  • Investigate the behavior of trigonometric functions over different intervals
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching algebra, and anyone interested in solving complex equations involving trigonometric functions.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all possible $\theta$, that satisfy the equation:

$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
 
Mathematics news on Phys.org
lfdahl said:
Find all possible $\theta$, that satisfy the equation:

$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
[sp]
Let us write $x=\cos^2\theta$; this implies $\sin^2\theta=1-x$. The equation becomes
$$\begin{align*}
x^4 + (1-x)^4 -2(1 - x(1-x))+1&=0\\
2x^4-4x^3+4x^2-2x&=0\\
2x(x-1)(x^2-x+1)&=0
\end{align*}$$
As $x^2-x+1$ has no real root, the only solutions are $x=0$ and $x=1$ (since $x\ge0$). These correspond to $\cos\theta=0,\,\pm1$ and $\theta=\dfrac{n\pi}{2}$, $n\in\mathbb{Z}$.
[/sp]
 
[sp]
$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
$$\cos^8\theta+\sin^8\theta-2\cos^4\theta\sin^4\theta +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^4\theta - \sin^4\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$\bigl((\cos^2\theta - \sin^2\theta)(\cos^2\theta + \sin^2\theta)\bigr)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta - \sin^2\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta + \sin^2\theta)^2 - 1 = 0$$
$$1 - 1 = 0$$ That is a tautology, so the equation is true for all $\theta$.

[It looks as though castor28 omitted to square $(1 - x(1-x))$.]
[/sp]
 
castor28 said:
[sp]
Let us write $x=\cos^2\theta$; this implies $\sin^2\theta=1-x$. The equation becomes
$$\begin{align*}
x^4 + (1-x)^4 -2(1 - x(1-x))+1&=0\\
2x^4-4x^3+4x^2-2x&=0\\
2x(x-1)(x^2-x+1)&=0
\end{align*}$$
As $x^2-x+1$ has no real root, the only solutions are $x=0$ and $x=1$ (since $x\ge0$). These correspond to $\cos\theta=0,\,\pm1$ and $\theta=\dfrac{n\pi}{2}$, $n\in\mathbb{Z}$.
[/sp]

Thankyou, castor28, for your participation!

It seems, Opalg is right: You forgot to square the parenthesis. The correct answer is: $\theta \in \Bbb{R}$.
 
Opalg said:
[sp]
$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
$$\cos^8\theta+\sin^8\theta-2\cos^4\theta\sin^4\theta +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^4\theta - \sin^4\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$\bigl((\cos^2\theta - \sin^2\theta)(\cos^2\theta + \sin^2\theta)\bigr)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta - \sin^2\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta + \sin^2\theta)^2 - 1 = 0$$
$$1 - 1 = 0$$ That is a tautology, so the equation is true for all $\theta$.

[It looks as though castor28 omitted to square $(1 - x(1-x))$.]
[/sp]

Thankyou, Opalg, for a short and elegant solution!

Yes, the equation is indeed a tautology!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K