MHB Solve the equation cos^8θ+sin^8θ−2(1−cos^2θsin^2θ)^2+1=0

  • Thread starter Thread starter lfdahl
  • Start date Start date
AI Thread Summary
The equation cos^8θ + sin^8θ - 2(1 - cos^2θ sin^2θ)^2 + 1 = 0 simplifies to a form that reveals its solutions. By substituting x = cos^2θ, the equation reduces to 2x(x-1)(x^2-x+1) = 0, yielding x = 0 and x = 1 as the only real solutions. These correspond to cosθ = 0 and cosθ = ±1, leading to solutions θ = nπ/2, where n is an integer. Further analysis shows that the original equation is actually a tautology, confirming it holds true for all θ. Thus, the equation is satisfied universally across all angles.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all possible $\theta$, that satisfy the equation:

$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
 
Mathematics news on Phys.org
lfdahl said:
Find all possible $\theta$, that satisfy the equation:

$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
[sp]
Let us write $x=\cos^2\theta$; this implies $\sin^2\theta=1-x$. The equation becomes
$$\begin{align*}
x^4 + (1-x)^4 -2(1 - x(1-x))+1&=0\\
2x^4-4x^3+4x^2-2x&=0\\
2x(x-1)(x^2-x+1)&=0
\end{align*}$$
As $x^2-x+1$ has no real root, the only solutions are $x=0$ and $x=1$ (since $x\ge0$). These correspond to $\cos\theta=0,\,\pm1$ and $\theta=\dfrac{n\pi}{2}$, $n\in\mathbb{Z}$.
[/sp]
 
[sp]
$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
$$\cos^8\theta+\sin^8\theta-2\cos^4\theta\sin^4\theta +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^4\theta - \sin^4\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$\bigl((\cos^2\theta - \sin^2\theta)(\cos^2\theta + \sin^2\theta)\bigr)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta - \sin^2\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta + \sin^2\theta)^2 - 1 = 0$$
$$1 - 1 = 0$$ That is a tautology, so the equation is true for all $\theta$.

[It looks as though castor28 omitted to square $(1 - x(1-x))$.]
[/sp]
 
castor28 said:
[sp]
Let us write $x=\cos^2\theta$; this implies $\sin^2\theta=1-x$. The equation becomes
$$\begin{align*}
x^4 + (1-x)^4 -2(1 - x(1-x))+1&=0\\
2x^4-4x^3+4x^2-2x&=0\\
2x(x-1)(x^2-x+1)&=0
\end{align*}$$
As $x^2-x+1$ has no real root, the only solutions are $x=0$ and $x=1$ (since $x\ge0$). These correspond to $\cos\theta=0,\,\pm1$ and $\theta=\dfrac{n\pi}{2}$, $n\in\mathbb{Z}$.
[/sp]

Thankyou, castor28, for your participation!

It seems, Opalg is right: You forgot to square the parenthesis. The correct answer is: $\theta \in \Bbb{R}$.
 
Opalg said:
[sp]
$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
$$\cos^8\theta+\sin^8\theta-2\cos^4\theta\sin^4\theta +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^4\theta - \sin^4\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$\bigl((\cos^2\theta - \sin^2\theta)(\cos^2\theta + \sin^2\theta)\bigr)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta - \sin^2\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta + \sin^2\theta)^2 - 1 = 0$$
$$1 - 1 = 0$$ That is a tautology, so the equation is true for all $\theta$.

[It looks as though castor28 omitted to square $(1 - x(1-x))$.]
[/sp]

Thankyou, Opalg, for a short and elegant solution!

Yes, the equation is indeed a tautology!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top