Solve the simultaneous linear congruences

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Linear
Click For Summary

Homework Help Overview

The discussion revolves around solving a set of simultaneous linear congruences: 3x ≡ 2 (mod 5), 3x ≡ 4 (mod 7), and 3x ≡ 6 (mod 11). Participants explore the application of the Chinese Remainder Theorem in this context.

Discussion Character

  • Exploratory, Mathematical reasoning

Approaches and Questions Raised

  • Participants describe the steps taken to reduce the congruences and apply the Chinese Remainder Theorem. There are questions about potential typos in the calculations and the correctness of the results presented.

Discussion Status

The discussion includes verification of the calculations and results, with some participants expressing confidence in the correctness while others seek clarification on possible errors. The exploration of the congruences and their implications is ongoing.

Contextual Notes

Some participants note the importance of ensuring that the equations are correctly interpreted and that the assumptions about the coprimality of the moduli are valid.

Math100
Messages
823
Reaction score
234
Homework Statement
Solve the simultaneous linear congruences ## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Relevant Equations
Let ## p, q ## be coprime. Then the system of equations ## x\equiv a\pmod {p}, x\equiv b\pmod {q}## has a unique solution for ## x ## modulo ## pq ##.
Consider the following set of simultaneous linear congruences:
## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Observe that
\begin{align*}
&3x\equiv 2\pmod {5}\implies 6x\equiv 4\pmod {5}\implies x\equiv 4\pmod {5}\\
&3x\equiv 4\pmod {7}\implies 15x\equiv 20\pmod {7}\implies x\equiv 6\pmod {7}\\
&3x\equiv 6\pmod {11}\implies 12x\equiv 24\pmod {11}\implies x\equiv 2\pmod {11}.\\
\end{align*}
Applying the Chinese Remainder Theorem produces:
## n=5\cdot 7\cdot 11=385 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1,2,...,r ##.
Note that ## N_{1}=\frac{385}{5}=77, N_{2}=\frac{385}{7}=55 ## and ## N_{3}=\frac{385}{11}=35 ##.
Then ## 77x_{1}\equiv 1\pmod {5}, 55x_{2}\equiv 1\pmod {7} ## and ## 35x_{3}\equiv 1\pmod {11} ##.
This implies ## x_{1}=3, x_{2}=6 ## and ## x_{3}=6 ##.
Thus ## x\equiv (4\cdot 77\cdot 3+6\cdot 55\cdot 6+2\cdot 35\cdot 6)\pmod {385}\equiv 3324\pmod {385}\equiv 244\pmod {385} ##.
Therefore, ## x\equiv 244\pmod {385} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the simultaneous linear congruences ## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Relevant Equations:: Let ## p, q ## be coprime. Then the system of equations ## x\equiv a\pmod {p}, x\equiv b\pmod {q}## has a unique solution for ## x ## modulo ## pq ##.

Consider the following set of simultaneous linear congruences:
## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Observe that
\begin{align*}
&3x\equiv 2\pmod {5}\implies 6x\equiv 4\pmod {5}\implies x\equiv 4\pmod {5}\\
&3x\equiv 4\pmod {7}\implies 15x\equiv 20\pmod {7}\implies x\equiv 6\pmod {7}\\
&3x\equiv 6\pmod {11}\implies 12x\equiv 24\pmod {11}\implies x\equiv 2\pmod {11}.\\
\end{align*}
Applying the Chinese Remainder Theorem produces:
## n=5\cdot 7\cdot 11=385 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1,2,...,r ##.
Note that ## N_{1}=\frac{385}{5}=77, N_{2}=\frac{385}{7}=55 ## and ## N_{3}=\frac{385}{11}=35 ##.
Then ## 77x_{1}\equiv 1\pmod {5}, 55x_{2}\equiv 1\pmod {7} ## and ## 35x_{3}\equiv 1\pmod {11} ##.
This implies ## x_{1}=3, x_{2}=6 ## and ## x_{3}=6 ##.
Thus ## x\equiv (4\cdot 77\cdot 3+6\cdot 55\cdot 6+2\cdot 35\cdot 6)\pmod {385}\equiv 3324\pmod {385}\equiv 244\pmod {385} ##.
Therefore, ## x\equiv 244\pmod {385} ##.
Correct, if I haven't overlooked a typo. The result is definitely correct.
 
fresh_42 said:
Correct, if I haven't overlooked a typo. The result is definitely correct.
Is there a typo?
 
Math100 said:
Is there a typo?
No.
 
  • Like
Likes   Reactions: Math100
You can verify the solution yourself:
244(3)=732=2Mod5=4mod7=6Mod11
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
3K