Solve the simultaneous linear congruences

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Linear
AI Thread Summary
The simultaneous linear congruences 3x≡2 (mod 5), 3x≡4 (mod 7), and 3x≡6 (mod 11) can be solved using the Chinese Remainder Theorem. The calculations show that x≡4 (mod 5), x≡6 (mod 7), and x≡2 (mod 11). The product of the moduli is n=385, leading to N values of 77, 55, and 35 for each modulus. The final solution is x≡244 (mod 385), which can be verified by substituting back into the original congruences. The solution is confirmed to be correct with no typos present.
Math100
Messages
813
Reaction score
229
Homework Statement
Solve the simultaneous linear congruences ## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Relevant Equations
Let ## p, q ## be coprime. Then the system of equations ## x\equiv a\pmod {p}, x\equiv b\pmod {q}## has a unique solution for ## x ## modulo ## pq ##.
Consider the following set of simultaneous linear congruences:
## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Observe that
\begin{align*}
&3x\equiv 2\pmod {5}\implies 6x\equiv 4\pmod {5}\implies x\equiv 4\pmod {5}\\
&3x\equiv 4\pmod {7}\implies 15x\equiv 20\pmod {7}\implies x\equiv 6\pmod {7}\\
&3x\equiv 6\pmod {11}\implies 12x\equiv 24\pmod {11}\implies x\equiv 2\pmod {11}.\\
\end{align*}
Applying the Chinese Remainder Theorem produces:
## n=5\cdot 7\cdot 11=385 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1,2,...,r ##.
Note that ## N_{1}=\frac{385}{5}=77, N_{2}=\frac{385}{7}=55 ## and ## N_{3}=\frac{385}{11}=35 ##.
Then ## 77x_{1}\equiv 1\pmod {5}, 55x_{2}\equiv 1\pmod {7} ## and ## 35x_{3}\equiv 1\pmod {11} ##.
This implies ## x_{1}=3, x_{2}=6 ## and ## x_{3}=6 ##.
Thus ## x\equiv (4\cdot 77\cdot 3+6\cdot 55\cdot 6+2\cdot 35\cdot 6)\pmod {385}\equiv 3324\pmod {385}\equiv 244\pmod {385} ##.
Therefore, ## x\equiv 244\pmod {385} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the simultaneous linear congruences ## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Relevant Equations:: Let ## p, q ## be coprime. Then the system of equations ## x\equiv a\pmod {p}, x\equiv b\pmod {q}## has a unique solution for ## x ## modulo ## pq ##.

Consider the following set of simultaneous linear congruences:
## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Observe that
\begin{align*}
&3x\equiv 2\pmod {5}\implies 6x\equiv 4\pmod {5}\implies x\equiv 4\pmod {5}\\
&3x\equiv 4\pmod {7}\implies 15x\equiv 20\pmod {7}\implies x\equiv 6\pmod {7}\\
&3x\equiv 6\pmod {11}\implies 12x\equiv 24\pmod {11}\implies x\equiv 2\pmod {11}.\\
\end{align*}
Applying the Chinese Remainder Theorem produces:
## n=5\cdot 7\cdot 11=385 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1,2,...,r ##.
Note that ## N_{1}=\frac{385}{5}=77, N_{2}=\frac{385}{7}=55 ## and ## N_{3}=\frac{385}{11}=35 ##.
Then ## 77x_{1}\equiv 1\pmod {5}, 55x_{2}\equiv 1\pmod {7} ## and ## 35x_{3}\equiv 1\pmod {11} ##.
This implies ## x_{1}=3, x_{2}=6 ## and ## x_{3}=6 ##.
Thus ## x\equiv (4\cdot 77\cdot 3+6\cdot 55\cdot 6+2\cdot 35\cdot 6)\pmod {385}\equiv 3324\pmod {385}\equiv 244\pmod {385} ##.
Therefore, ## x\equiv 244\pmod {385} ##.
Correct, if I haven't overlooked a typo. The result is definitely correct.
 
fresh_42 said:
Correct, if I haven't overlooked a typo. The result is definitely correct.
Is there a typo?
 
Math100 said:
Is there a typo?
No.
 
You can verify the solution yourself:
244(3)=732=2Mod5=4mod7=6Mod11
 
Back
Top