MHB Solve Trig Challenge: Find All Values of x

Click For Summary
The equation to solve is $\tan \left( x+\dfrac{\pi}{18}\right)\tan \left( x+\dfrac{\pi}{9}\right)\tan \left( x+\dfrac{\pi}{6}\right)=\tan x$. The discussion highlights the effectiveness of algebraic simplification methods in tackling trigonometric equations. A solution was provided by kaliprasad, demonstrating a successful approach to the problem. Participants emphasize the importance of understanding trigonometric identities in finding all values of $x$. The conversation reflects a collaborative effort to solve complex trigonometric challenges.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all values of $x$ which satisfy $\tan \left( x+\dfrac{\pi}{18}\right)\tan \left( x+\dfrac{\pi}{9}\right)\tan \left( x+\dfrac{\pi}{6}\right)=\tan x$.
 
Mathematics news on Phys.org
$\tan\, x \cot (x +\frac{\pi}{18}) = \tan (x+\frac{\pi}{9}) \tan (x + \frac{\pi}{6})$

or $\dfrac{\sin\, x\ cos (x+ \frac{\pi}{18})}{cos\, x \,\sin (x+\frac{\pi}{18})} = \dfrac{sin (x+ \frac{\pi}{9})sin (x + \frac{\pi}{6})}{\cos(x+ \frac{\pi}{9}) \cos (x + \frac{\pi}{6})}$

using compnendo and dividendo we have

$\dfrac{\sin\, x \cos (x+ \frac{\pi}{18}) +cos\, x sin (x+\frac{\pi}{18})}{\cos\, x sin (x+\frac{\pi}{18}) - \sin\, x \cos (x+ \frac{\pi}{18})}$ =
$\dfrac{\cos(x+ \frac{\pi}{9}) cos (x + \frac{\pi}{6})+ \sin (x+\frac{\pi}{9}) \sin (x +\frac{\pi}{6} )}{\cos(x+ \frac{\pi}{9})\ cos (x + \frac{\pi}{6})- \sin (x+ \frac{\pi}{9}) sin (x + \frac{\pi}{6})}$
or $\dfrac{sin (2x + \frac{\pi}{18})}{sin(\frac{\pi}{18})} =\dfrac {cos \frac{\pi}{18}}{cos (2x + \frac{5\pi}{18})}$

or $\sin (2x+\frac{\pi}{18})\ cos (2x + \frac{5\pi}{18}) = \sin \frac{\pi}{18}\cos\frac{\pi}{18}$
or $2\sin (2x+\frac{\pi}{18})\ cos (2x + \frac{5\pi}{18}) =2 \sin \frac{\pi}{18}\cos\frac{\pi}{18}$

or $\sin (4x + \frac{\pi}{3}) – \sin \frac{2\pi}{9} = 2 \sin \frac{\pi}{9}$
or or $\sin (4x + \frac{\pi}{3})= \sin \frac{\pi}{9} + sin \frac{2\pi}{9} = 2 \sin (\frac{\frac{\pi}{9} +\frac{ 2pi}{9}}{2}) \cos (\frac{\frac{\pi}{9} -\frac{ 2pi}{9}}{2} ) = \cos\frac{\pi}{18} $
or $\cos (\frac{\pi}{6}-4x)= \cos \frac{\pi}{18}$

or $\cos (4x – \frac{\pi}{6}) = \cos \frac{\pi}{18}$

or $4x – \frac{pi}{6} = 2n\pi \pm \frac{\pi}{18}$

or $x = \frac{2n\pi + \frac{\pi}{6}\pm \frac{\ pi}{18}}{4}$
 
Last edited:
kaliprasad said:
$\tan\, x \cot (x +\frac{\pi}{18}) = \tan (x+\frac{\pi}{9}) \tan (x + \frac{\pi}{6})$

or $\dfrac{\sin\, x\ cos (x+ \frac{\pi}{18})}{cos\, x \,\sin (x+\frac{\pi}{18})} = \dfrac{sin (x+ \frac{\pi}{9})sin (x + \frac{\pi}{6})}{\cos(x+ \frac{\pi}{9}) \cos (x + \frac{\pi}{6})}$

using compnendo and dividendo we have

$\dfrac{\sin\, x \cos (x+ \frac{\pi}{18}) +cos\, x sin (x+\frac{\pi}{18})}{\cos\, x sin (x+\frac{\pi}{18}) - \sin\, x \cos (x+ \frac{\pi}{18})}$ =
$\dfrac{\cos(x+ \frac{\pi}{9}) cos (x + \frac{\pi}{6})+ \sin (x+\frac{\pi}{9}) \sin (x +\frac{\pi}{6} )}{\cos(x+ \frac{\pi}{9})\ cos (x + \frac{\pi}{6})- \sin (x+ \frac{\pi}{9}) sin (x + \frac{\pi}{6})}$
or $\dfrac{sin (2x + \frac{\pi}{18})}{sin(\frac{\pi}{18})} =\dfrac {cos \frac{\pi}{18}}{cos (2x + \frac{5\pi}{18})}$

or $\sin (2x+\frac{\pi}{18})\ cos (2x + \frac{5\pi}{18}) = \sin \frac{\pi}{18}\cos\frac{\pi}{18}$
or $2\sin (2x+\frac{\pi}{18})\ cos (2x + \frac{5\pi}{18}) =2 \sin \frac{\pi}{18}\cos\frac{\pi}{18}$

or $\sin (4x + \frac{\pi}{3}) – \sin \frac{2\pi}{9} = 2 \sin \frac{\pi}{9}$
or or $\sin (4x + \frac{\pi}{3})= \sin \frac{\pi}{9} + sin \frac{2\pi}{9} = 2 \sin (\frac{\frac{\pi}{9} +\frac{ 2pi}{9}}{2}) \cos (\frac{\frac{\pi}{9} -\frac{ 2pi}{9}}{2} ) = \cos\frac{\pi}{18} $
or $\cos (\frac{\pi}{6}-4x)= \cos \frac{\pi}{18}$

or $\cos (4x – \frac{\pi}{6}) = \cos \frac{\pi}{18}$

or $4x – \frac{pi}{6} = 2n\pi \pm \frac{\pi}{18}$

or $x = \frac{2n\pi + \frac{\pi}{6}\pm \frac{\ pi}{18}}{4}$

Thanks, kaliprasad for your solution using the method that has been proven to be such an useful algebraic way of simplification! (Sun)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K