MHB Solve x^2/(x+3) < 9/(x+3): -2 < x < 1/2, x > 3

  • Thread starter Thread starter eleventhxhour
  • Start date Start date
  • Tags Tags
    Set
eleventhxhour
Messages
73
Reaction score
0
Find the solution set for x^2/(x+3) < 9/(x+3)

So I moved the term 9/(x+3) over to the left side and cross-multiplied the two fractions. Then, I simplified to get x^2-9 (because the x+3 cancel out across the fraction bar). I got x^2-9, which factors to (x+3)(x-3). Then, I created an interval table using these key values, ending with the answer -3 < x < 3.

However, the answer in the book states that it is -2 < x < 1/2 and x > 3. What did I do wrong? How did they get the -2 and 1/2 values?

Thanks!
 
Mathematics news on Phys.org
This is how I would solve the problem:

$$\frac{x^2}{x+3}<\frac{9}{x+3}$$

$$\frac{x^2}{x+3}-\frac{9}{x+3}<0$$

$$\frac{(x+3)(x-3)}{x+3}<0$$

We don't want to remove the singularity here, as this will remove a critical number. We have two such critical numbers:

$$x\in\{-3,3\}$$

Both if which need to be excluded from the solution because of division by zero in the case of $x=-3$ and because the inequality is strict.

So, we have 3 intervals to consider:

$$(-\infty,-3),\,(-3,3),\,(3,\infty)$$

Pick a test value from each interval, and test the sign of the expression on the left, and keep those for which the expression is negative...what do you find?
 
MarkFL said:
This is how I would solve the problem:

$$\frac{x^2}{x+3}<\frac{9}{x+3}$$

$$\frac{x^2}{x+3}-\frac{9}{x+3}<0$$

$$\frac{(x+3)(x-3)}{x+3}<0$$

We don't want to remove the singularity here, as this will remove a critical number. We have two such critical numbers:

$$x\in\{-3,3\}$$

Both if which need to be excluded from the solution because of division by zero in the case of $x=-3$ and because the inequality is strict.

So, we have 3 intervals to consider:

$$(-\infty,-3),\,(-3,3),\,(3,\infty)$$

Pick a test value from each interval, and test the sign of the expression on the left, and keep those for which the expression is negative...what do you find?

So I tried that and got that it's negative for the intervals x<-3 and -3 < x < 3. But that's still different from the answer in the book? I'm not sure where they'd even get the -2 and 1/2 from.
 
eleventhxhour said:
So I tried that and got that it's negative for the intervals x<-3 and -3 < x < 3. But that's still different from the answer in the book? I'm not sure where they'd even get the -2 and 1/2 from.
(shrugs) The book is wrong.

-Dan
 
topsquark said:
(shrugs) The book is wrong.

-Dan

Alright, thanks!

So the book also asked to graph it. I know there'd be vertical asymptote at x = -3, but how would you figure out where the horizontal asymptote is (or if there even is one)?
 
eleventhxhour said:
...So the book also asked to graph it. I know there'd be vertical asymptote at x = -3, but how would you figure out where the horizontal asymptote is (or if there even is one)?

You won't have a vertical asymptote at $x=-3$, you will have a hole in the graph instead, because the singularity is removable.

It will be identical to the graph of $y=x-3$, except with the hole at $(-3,-6)$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top