Solve ##x\equiv 1\pmod {3},x\equiv 2\pmod {5},x\equiv 3\pmod 7 ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
The simultaneous congruences x≡1 (mod 3), x≡2 (mod 5), and x≡3 (mod 7) can be solved using the Chinese Remainder Theorem. The product of the moduli is n=105. The values N_k are calculated as N_1=35, N_2=21, and N_3=15. The corresponding solutions for x_1, x_2, and x_3 are found to be 2, 1, and 1, respectively. Ultimately, the solution to the system of congruences is x≡52 (mod 105).
Math100
Messages
817
Reaction score
229
Homework Statement
Solve the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Relevant Equations
None.
Consider the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Applying the Chinese Remainder Theorem produces:
## n=3\cdot 5\cdot 7=105 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{105}{3}=35, N_{2}=\frac{105}{5}=21 ## and ## N_{3}=\frac{105}{7}=15 ##.
Then
\begin{align*}
&35x_{1}\equiv 1\pmod {3}\\
&21x_{2}\equiv 1\pmod {5}\\
&15x_{3}\equiv 1\pmod {7}.\\
\end{align*}
This means ## x_{1}=2, x_{2}=1 ## and ## x_{3}=1 ##.
Thus ## x\equiv (1\cdot 35\cdot 2+2\cdot 21\cdot 1+3\cdot 15\cdot 1)\pmod {105}\equiv 157\pmod {105}\equiv 52\pmod {105} ##.
Therefore, ## x\equiv 52\pmod {105} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Relevant Equations:: None.

Consider the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Applying the Chinese Remainder Theorem produces:
## n=3\cdot 5\cdot 7=105 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{105}{3}=35, N_{2}=\frac{105}{5}=21 ## and ## N_{3}=\frac{105}{7}=15 ##.
Then
\begin{align*}
&35x_{1}\equiv 1\pmod {3}\\
&21x_{2}\equiv 1\pmod {5}\\
&15x_{3}\equiv 1\pmod {7}.\\
\end{align*}
This means ## x_{1}=2, x_{2}=1 ## and ## x_{3}=1 ##.
Thus ## x\equiv (1\cdot 35\cdot 2+2\cdot 21\cdot 1+3\cdot 15\cdot 1)\pmod {105}\equiv 157\pmod {105}\equiv 52\pmod {105} ##.
Therefore, ## x\equiv 52\pmod {105} ##.
Perfect!
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks

Similar threads

Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K