Solve ##x\equiv 1\pmod {3},x\equiv 2\pmod {5},x\equiv 3\pmod 7 ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The solution to the simultaneous congruences ## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ## is derived using the Chinese Remainder Theorem. The product of the moduli is calculated as ## n=3\cdot 5\cdot 7=105 ##. The values of ## N_{k} ## are determined as ## N_{1}=35, N_{2}=21, N_{3}=15 ##. The final solution is expressed as ## x\equiv 52\pmod {105} ##.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with the Chinese Remainder Theorem
  • Basic algebraic manipulation skills
  • Knowledge of congruences
NEXT STEPS
  • Study the applications of the Chinese Remainder Theorem in number theory
  • Explore advanced topics in modular arithmetic
  • Learn about algorithms for solving systems of congruences
  • Investigate the implications of congruences in cryptography
USEFUL FOR

Mathematicians, students studying number theory, computer scientists, and anyone interested in solving systems of modular equations.

Math100
Messages
817
Reaction score
230
Homework Statement
Solve the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Relevant Equations
None.
Consider the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Applying the Chinese Remainder Theorem produces:
## n=3\cdot 5\cdot 7=105 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{105}{3}=35, N_{2}=\frac{105}{5}=21 ## and ## N_{3}=\frac{105}{7}=15 ##.
Then
\begin{align*}
&35x_{1}\equiv 1\pmod {3}\\
&21x_{2}\equiv 1\pmod {5}\\
&15x_{3}\equiv 1\pmod {7}.\\
\end{align*}
This means ## x_{1}=2, x_{2}=1 ## and ## x_{3}=1 ##.
Thus ## x\equiv (1\cdot 35\cdot 2+2\cdot 21\cdot 1+3\cdot 15\cdot 1)\pmod {105}\equiv 157\pmod {105}\equiv 52\pmod {105} ##.
Therefore, ## x\equiv 52\pmod {105} ##.
 
  • Love
Likes   Reactions: fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Relevant Equations:: None.

Consider the following set of simultaneous congruences:
## x\equiv 1\pmod {3}, x\equiv 2\pmod {5}, x\equiv 3\pmod {7} ##.
Applying the Chinese Remainder Theorem produces:
## n=3\cdot 5\cdot 7=105 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{105}{3}=35, N_{2}=\frac{105}{5}=21 ## and ## N_{3}=\frac{105}{7}=15 ##.
Then
\begin{align*}
&35x_{1}\equiv 1\pmod {3}\\
&21x_{2}\equiv 1\pmod {5}\\
&15x_{3}\equiv 1\pmod {7}.\\
\end{align*}
This means ## x_{1}=2, x_{2}=1 ## and ## x_{3}=1 ##.
Thus ## x\equiv (1\cdot 35\cdot 2+2\cdot 21\cdot 1+3\cdot 15\cdot 1)\pmod {105}\equiv 157\pmod {105}\equiv 52\pmod {105} ##.
Therefore, ## x\equiv 52\pmod {105} ##.
Perfect!
 
  • Love
Likes   Reactions: Math100

Similar threads

Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K