Solve ##x\equiv 5\pmod{11},x\equiv 14\pmod{29},x\equiv 15\pmod{31}##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The problem involves solving a set of simultaneous congruences: ## x\equiv 5\pmod {11}, x\equiv 14\pmod {29}, x\equiv 15\pmod {31} ##. Participants are discussing the application of the Chinese Remainder Theorem to find a solution.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants describe the use of the Chinese Remainder Theorem and the calculation of values ## N_{k} ## for each modulus. There are inquiries about how specific values ## x_{1}, x_{2}, x_{3} ## were determined, and alternative methods for checking calculations are suggested.

Discussion Status

The discussion includes multiple approaches to the problem, with some participants confirming calculations and others exploring different methods for finding solutions. There is no explicit consensus, but various lines of reasoning are being examined.

Contextual Notes

Participants are working within the constraints of the problem as a homework assignment, which may limit the depth of exploration into alternative methods or solutions.

Math100
Messages
823
Reaction score
234
Homework Statement
Solve the following set of simultaneous congruences:
##x\equiv 5\pmod{11},x\equiv 14\pmod {29},x\equiv 15\pmod{31}##.
Relevant Equations
None.
Consider the following set of simultaneous congruences:
## x\equiv 5\pmod {11}, x\equiv 14\pmod {29}, x\equiv 15\pmod {31} ##.
Applying the Chinese Remainder Theorem produces:
## n=11\cdot 29\cdot 31=9889 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{9889}{11}=899, N_{2}=\frac{9889}{29}=341 ## and ## N_{3}=\frac{9889}{31}=319 ##.
Then
\begin{align*}
&899x_{1}\equiv 1\pmod {11}\\
&341x_{2}\equiv 1\pmod {29}\\
&319x_{3}\equiv 1\pmod {31}.\\
\end{align*}
This means ## x_{1}=7, x_{2}=4 ## and ## x_{3}=7 ##.
Thus ## x\equiv (5\cdot 899\cdot 7+14\cdot 341\cdot 4+15\cdot 319\cdot 7)\pmod {9889}\equiv 84056\pmod {9889}\equiv 4944\pmod {9889} ##.
Therefore, ## x\equiv 4944\pmod {9889} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the following set of simultaneous congruences:
## x\equiv 5\pmod {11}, x\equiv 14\pmod {29}, x\equiv 15\pmod {31} ##.
Relevant Equations:: None.

Consider the following set of simultaneous congruences:
## x\equiv 5\pmod {11}, x\equiv 14\pmod {29}, x\equiv 15\pmod {31} ##.
Applying the Chinese Remainder Theorem produces:
## n=11\cdot 29\cdot 31=9889 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{9889}{11}=899, N_{2}=\frac{9889}{29}=341 ## and ## N_{3}=\frac{9889}{31}=319 ##.
Then
\begin{align*}
&899x_{1}\equiv 1\pmod {11}\\
&341x_{2}\equiv 1\pmod {29}\\
&319x_{3}\equiv 1\pmod {31}.\\
\end{align*}
This means ## x_{1}=7, x_{2}=4 ## and ## x_{3}=7 ##.
Thus ## x\equiv (5\cdot 899\cdot 7+14\cdot 341\cdot 4+15\cdot 319\cdot 7)\pmod {9889}\equiv 84056\pmod {9889}\equiv 4944\pmod {9889} ##.
Therefore, ## x\equiv 4944\pmod {9889} ##.
Correct, and I checked all calculations. Btw., how did you find ##x_1,x_2## and ##x_3##?

Edit: A way to check modulo operations with calc.exe from windows is e.g. ##4944 \, : \,31= 159,...## followed by ##159,... \, - \,159 = ...## and ##... \, \cdot \,31 =15.## Hence ##4944 \equiv 15\pmod{31}.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Correct, and I checked all calculations. Btw., how did you find ##x_1,x_2## and ##x_3##?

Edit: A way to check modulo operations with calc.exe from windows is e.g. ##4944 \, : \,31= 159,...## followed by ##159,... \, - \,159 = ...## and ##... \, \cdot \,31 =15.## Hence ##4944 \equiv 15\pmod{31}.##

\begin{align*}
&899x_{1}\equiv 1\pmod {11}\\
&\implies 8x_{1}\equiv 1\pmod {11}\\
&\implies 32x_{1}\equiv 4\pmod {11}\\
&\implies -x_{1}\equiv 4\pmod {11}\\
&\implies x_{1}\equiv -4\pmod {11}\\
&\implies x_{1}\equiv 7\pmod {11}.\\
\end{align*}

## x_{1}=7 ##

\begin{align*}
&341x_{2}\equiv 1\pmod {29}\\
&\implies 22x_{2}\equiv 1\pmod {29}\\
&\implies -7x_{2}\equiv 1\pmod {29}\\
&\implies -28x_{2}\equiv 4\pmod {29}\\
&\implies x_{2}\equiv 4\pmod {29}.\\
\end{align*}
## x_{2}=4 ##
\begin{align*}
&319x_{3}\equiv 1\pmod {31}\\
&\implies 9x_{3}\equiv 1\pmod {31}\\
&\implies 36x_{3}\equiv 4\pmod {31}\\
&\implies 5x_{3}\equiv 4\pmod {31}\\
&\implies -30x_{3}\equiv -24\pmod {31}\\
&\implies x_{3}\equiv 7\pmod {31}.\\
\end{align*}
## x_{3}=7 ##
 
Last edited by a moderator:
  • Like
Likes   Reactions: fresh_42
Another way. Let
x=31a+15=29a+(2a+15)=11*3a+(-2a+15)
So
2a \equiv -1(mod\ 29)
2a \equiv -1(mod\ 11)
The least a is
2a+1=29*11
a=159
The least x is
x=31*159+15=4944
In general
x=31*29*11b+4944
where b=0,1,2,...
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K