Solve ##x\equiv 5\pmod{11},x\equiv 14\pmod{29},x\equiv 15\pmod{31}##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The solution to the simultaneous congruences ## x\equiv 5\pmod{11}, x\equiv 14\pmod{29}, x\equiv 15\pmod{31} ## is derived using the Chinese Remainder Theorem, yielding ## x\equiv 4944\pmod{9889} ##. The calculations involve determining the product of the moduli, ## n=9889 ##, and calculating the values of ## N_k ## for each modulus. The multiplicative inverses are found as ## x_1=7, x_2=4, x_3=7 ##, which are then used to compute the final solution. Verification of the solution can be performed using basic modulo operations.

PREREQUISITES
  • Understanding of the Chinese Remainder Theorem
  • Familiarity with modular arithmetic
  • Ability to compute multiplicative inverses modulo a number
  • Basic knowledge of congruences
NEXT STEPS
  • Study the Chinese Remainder Theorem in depth
  • Learn how to compute multiplicative inverses using the Extended Euclidean Algorithm
  • Explore applications of modular arithmetic in cryptography
  • Investigate other methods for solving systems of congruences
USEFUL FOR

Mathematicians, computer scientists, and students studying number theory or cryptography will benefit from this discussion, particularly those interested in solving systems of congruences and applying the Chinese Remainder Theorem.

Math100
Messages
817
Reaction score
230
Homework Statement
Solve the following set of simultaneous congruences:
##x\equiv 5\pmod{11},x\equiv 14\pmod {29},x\equiv 15\pmod{31}##.
Relevant Equations
None.
Consider the following set of simultaneous congruences:
## x\equiv 5\pmod {11}, x\equiv 14\pmod {29}, x\equiv 15\pmod {31} ##.
Applying the Chinese Remainder Theorem produces:
## n=11\cdot 29\cdot 31=9889 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{9889}{11}=899, N_{2}=\frac{9889}{29}=341 ## and ## N_{3}=\frac{9889}{31}=319 ##.
Then
\begin{align*}
&899x_{1}\equiv 1\pmod {11}\\
&341x_{2}\equiv 1\pmod {29}\\
&319x_{3}\equiv 1\pmod {31}.\\
\end{align*}
This means ## x_{1}=7, x_{2}=4 ## and ## x_{3}=7 ##.
Thus ## x\equiv (5\cdot 899\cdot 7+14\cdot 341\cdot 4+15\cdot 319\cdot 7)\pmod {9889}\equiv 84056\pmod {9889}\equiv 4944\pmod {9889} ##.
Therefore, ## x\equiv 4944\pmod {9889} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the following set of simultaneous congruences:
## x\equiv 5\pmod {11}, x\equiv 14\pmod {29}, x\equiv 15\pmod {31} ##.
Relevant Equations:: None.

Consider the following set of simultaneous congruences:
## x\equiv 5\pmod {11}, x\equiv 14\pmod {29}, x\equiv 15\pmod {31} ##.
Applying the Chinese Remainder Theorem produces:
## n=11\cdot 29\cdot 31=9889 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1, 2,..., r ##.
Observe that ## N_{1}=\frac{9889}{11}=899, N_{2}=\frac{9889}{29}=341 ## and ## N_{3}=\frac{9889}{31}=319 ##.
Then
\begin{align*}
&899x_{1}\equiv 1\pmod {11}\\
&341x_{2}\equiv 1\pmod {29}\\
&319x_{3}\equiv 1\pmod {31}.\\
\end{align*}
This means ## x_{1}=7, x_{2}=4 ## and ## x_{3}=7 ##.
Thus ## x\equiv (5\cdot 899\cdot 7+14\cdot 341\cdot 4+15\cdot 319\cdot 7)\pmod {9889}\equiv 84056\pmod {9889}\equiv 4944\pmod {9889} ##.
Therefore, ## x\equiv 4944\pmod {9889} ##.
Correct, and I checked all calculations. Btw., how did you find ##x_1,x_2## and ##x_3##?

Edit: A way to check modulo operations with calc.exe from windows is e.g. ##4944 \, : \,31= 159,...## followed by ##159,... \, - \,159 = ...## and ##... \, \cdot \,31 =15.## Hence ##4944 \equiv 15\pmod{31}.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Correct, and I checked all calculations. Btw., how did you find ##x_1,x_2## and ##x_3##?

Edit: A way to check modulo operations with calc.exe from windows is e.g. ##4944 \, : \,31= 159,...## followed by ##159,... \, - \,159 = ...## and ##... \, \cdot \,31 =15.## Hence ##4944 \equiv 15\pmod{31}.##

\begin{align*}
&899x_{1}\equiv 1\pmod {11}\\
&\implies 8x_{1}\equiv 1\pmod {11}\\
&\implies 32x_{1}\equiv 4\pmod {11}\\
&\implies -x_{1}\equiv 4\pmod {11}\\
&\implies x_{1}\equiv -4\pmod {11}\\
&\implies x_{1}\equiv 7\pmod {11}.\\
\end{align*}

## x_{1}=7 ##

\begin{align*}
&341x_{2}\equiv 1\pmod {29}\\
&\implies 22x_{2}\equiv 1\pmod {29}\\
&\implies -7x_{2}\equiv 1\pmod {29}\\
&\implies -28x_{2}\equiv 4\pmod {29}\\
&\implies x_{2}\equiv 4\pmod {29}.\\
\end{align*}
## x_{2}=4 ##
\begin{align*}
&319x_{3}\equiv 1\pmod {31}\\
&\implies 9x_{3}\equiv 1\pmod {31}\\
&\implies 36x_{3}\equiv 4\pmod {31}\\
&\implies 5x_{3}\equiv 4\pmod {31}\\
&\implies -30x_{3}\equiv -24\pmod {31}\\
&\implies x_{3}\equiv 7\pmod {31}.\\
\end{align*}
## x_{3}=7 ##
 
Last edited by a moderator:
  • Like
Likes   Reactions: fresh_42
Another way. Let
x=31a+15=29a+(2a+15)=11*3a+(-2a+15)
So
2a \equiv -1(mod\ 29)
2a \equiv -1(mod\ 11)
The least a is
2a+1=29*11
a=159
The least x is
x=31*159+15=4944
In general
x=31*29*11b+4944
where b=0,1,2,...
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K