MHB Solve x,y,z: Real Solutions $(x,y,z)$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on finding real solutions for the equations xyz=8, x^2y+y^2z+z^2x=73, and x(y-z)^2+y(z-x)^2+z(x-y)^2=98. Participants share their approaches to solving the system, with one user acknowledging another's more efficient method. The conversation highlights the complexity of the problem, with one participant deeming their own solution too tedious to share. Overall, the focus remains on collaborative problem-solving and sharing insights on the mathematical challenge. The thread emphasizes the importance of efficiency in finding solutions to complex equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all the real solutions $(x, y, z)$ of the system:

$xyz=8$

$x^2y+y^2z+z^2x=73$

$x(y-z)^2+y(z-x)^2+z(x-y)^2=98$
 
Mathematics news on Phys.org
My solution
Expanding the third equation and using the first to eliminate $xyz$ and then using the second equation gives

$(x-y)(y-z)(z-x) = 0$

Clearly we cannot have $x = y= z$ as this violates the third equation. We haave three choices here. Let us pick $z = x$, the other follow

Thus

$x^2y = 8$ and $x^2y+xy^2+x^3=73$ or $xy^2 + x^3 = 65$ Now $y = \dfrac{8}{x^2}$ giving

$x^3 - 65 + \dfrac{64}{x^3}=0$ or $\dfrac{\left(x^3-1\right)\left(x^3-64\right)}{x^3} = 0$

Thus, $x = 1$ or $x = 4$ leading to $(1,8,1)$ and $(4,1/2,4)$.

The other solutions are obtained by interchanging these vlues.
 
Jester said:
My solution
Expanding the third equation and using the first to eliminate $xyz$ and then using the second equation gives

$(x-y)(y-z)(z-x) = 0$

Clearly we cannot have $x = y= z$ as this violates the third equation. We haave three choices here. Let us pick $z = x$, the other follow

Thus

$x^2y = 8$ and $x^2y+xy^2+x^3=73$ or $xy^2 + x^3 = 65$ Now $y = \dfrac{8}{x^2}$ giving

$x^3 - 65 + \dfrac{64}{x^3}=0$ or $\dfrac{\left(x^3-1\right)\left(x^3-64\right)}{x^3} = 0$

Thus, $x = 1$ or $x = 4$ leading to $(1,8,1)$ and $(4,1/2,4)$.

The other solutions are obtained by interchanging these vlues.

Hi Jester, thanks for participating and you got it right!

To be completely honest with you, my solution is tedious compared to yours and hence I don't think it's worth mentioning here... :o
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top