Solve x,y,z: Real Solutions $(x,y,z)$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion focuses on finding all real solutions \((x, y, z)\) for the system of equations defined by \(xyz=8\), \(x^2y+y^2z+z^2x=73\), and \(x(y-z)^2+y(z-x)^2+z(x-y)^2=98\). Participants share their solutions, with one user, Jester, receiving acknowledgment for an efficient approach. The conversation highlights the complexity of the problem and the varying methods used to arrive at the solutions.

PREREQUISITES
  • Understanding of algebraic equations and systems of equations
  • Familiarity with polynomial identities and symmetric functions
  • Knowledge of real number properties and inequalities
  • Experience with mathematical problem-solving techniques
NEXT STEPS
  • Explore advanced techniques in solving nonlinear systems of equations
  • Study polynomial identities and their applications in problem-solving
  • Learn about symmetric functions and their role in algebra
  • Investigate methods for optimizing solutions in algebraic contexts
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving complex systems of equations will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all the real solutions $(x, y, z)$ of the system:

$xyz=8$

$x^2y+y^2z+z^2x=73$

$x(y-z)^2+y(z-x)^2+z(x-y)^2=98$
 
Mathematics news on Phys.org
My solution
Expanding the third equation and using the first to eliminate $xyz$ and then using the second equation gives

$(x-y)(y-z)(z-x) = 0$

Clearly we cannot have $x = y= z$ as this violates the third equation. We haave three choices here. Let us pick $z = x$, the other follow

Thus

$x^2y = 8$ and $x^2y+xy^2+x^3=73$ or $xy^2 + x^3 = 65$ Now $y = \dfrac{8}{x^2}$ giving

$x^3 - 65 + \dfrac{64}{x^3}=0$ or $\dfrac{\left(x^3-1\right)\left(x^3-64\right)}{x^3} = 0$

Thus, $x = 1$ or $x = 4$ leading to $(1,8,1)$ and $(4,1/2,4)$.

The other solutions are obtained by interchanging these vlues.
 
Jester said:
My solution
Expanding the third equation and using the first to eliminate $xyz$ and then using the second equation gives

$(x-y)(y-z)(z-x) = 0$

Clearly we cannot have $x = y= z$ as this violates the third equation. We haave three choices here. Let us pick $z = x$, the other follow

Thus

$x^2y = 8$ and $x^2y+xy^2+x^3=73$ or $xy^2 + x^3 = 65$ Now $y = \dfrac{8}{x^2}$ giving

$x^3 - 65 + \dfrac{64}{x^3}=0$ or $\dfrac{\left(x^3-1\right)\left(x^3-64\right)}{x^3} = 0$

Thus, $x = 1$ or $x = 4$ leading to $(1,8,1)$ and $(4,1/2,4)$.

The other solutions are obtained by interchanging these vlues.

Hi Jester, thanks for participating and you got it right!

To be completely honest with you, my solution is tedious compared to yours and hence I don't think it's worth mentioning here... :o
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K