MHB Solving a Difficult DE with TI-NSPIRE: Is it True?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
1000
Given
$${a}^{2}{u}_{xx}={u}_{t}$$
Is
$$u=\left(\pi/t\right)^{1/2}e^{{-x^2 }/{4a^2 t}}, \ \ t>0 $$
A solution to the differential equation

$${u}_{xx }$$
Was kinda hard to get, the TI-NSPIRE returned a very complicated answer
and it doesn't look like the differential equation is true
 
Last edited:
Physics news on Phys.org
karush said:
Given
$${a}^{2}{u}_{xx}={u}_{t}$$
Is
$$u=\left(\pi/t\right)^{1/2}e^{{-x^2 }/{4a^2 t}}, \ \ t>0 $$
A solution to the differential equation

$${u}_{xx }$$
Was kinda hard to get, the TI-NSPIRE returned a very complicated answer
and it doesn't look like the differential equation is true

Well if $\displaystyle \begin{align*} u = \left( \pi\,t \right) ^{\frac{1}{2}}\,\mathrm{e}^{-\frac{x^2}{4\,a^2\,t}} \end{align*}$? then what is $\displaystyle \begin{align*} u_t \end{align*}$? What is $\displaystyle \begin{align*} u_{x\,x} \end{align*}$? Is the DE true in this case?
 
$${u}_{xx}=\d{^2 }{x^2 }\left(u\right)=
\left(\frac{{x}^{2}\sqrt{\frac{\pi}{t}}}{4 a^4 t^2 }
-\frac{\sqrt{\frac{\pi}{t}}}{2{a}^{2}t} \right)
\cdot e^{\frac{x^2 }{4{a}^{2}t}}$$

This is what the TI-Nspire returned for $U_{xx}$
$u_t$ looked more complicated and was very different so assume DE is not true

I like to see how these derivatives were derived but that a ton of latex
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...

Similar threads

Back
Top