Solving a Recurrence: $a_0 = 2$

  • Context: MHB 
  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Recurrence
Click For Summary
SUMMARY

The recurrence relation defined as $a_0 = 2$ and $a_{n+1} = 2a_{n} + \sqrt{3(a_n)^2 - 12}$ leads to an increasing sequence without a finite limit. The discussion reveals that the sequence can be approximated using the formula $a_n \approx 2 \cdot (2 + \sqrt{3})^n - \frac{(2 + \sqrt{3})^{2n} - 1}{(2 + \sqrt{3})^{n + 1}} \left [ \frac{12 + 7 \sqrt{3}}{3 + 2 \sqrt{3}} \right ]$. This approximation is derived from analyzing the error term and the asymptotic growth of the sequence. The original inquiry was to demonstrate that all members of the sequence are integers and to find a closed-form solution.

PREREQUISITES
  • Understanding of recurrence relations
  • Familiarity with limits and asymptotic analysis
  • Knowledge of geometric series
  • Basic algebraic manipulation of square roots and polynomials
NEXT STEPS
  • Explore advanced techniques in solving recurrence relations
  • Study the properties of geometric series and their applications
  • Learn about asymptotic notation and its significance in analysis
  • Investigate integer sequences and their representations in the OEIS
USEFUL FOR

Mathematicians, computer scientists, and students studying discrete mathematics or algorithm analysis who are interested in recurrence relations and their solutions.

magneto1
Messages
100
Reaction score
0
Not sure if Discrete Math is the correct category, but I'm looking for some idea / hint on how to tackle the following recurrence.

$a_0 = 2$, and $a_{n+1} = 2a_{n} + \sqrt{3(a_n)^2 - 12}$ for $n \in \Bbb{N}$.

Some attempts to massage the equation got me: $(a_{n+1}-a_n)^2 = 2a_na_{n+1} - 12$, which is equally messy.
 
Last edited:
Physics news on Phys.org
magneto said:
Not sure if Discrete Math is the correct category, but I'm looking for some idea / hint on how to tackle the following recurrence.

$a_0 = 2$, and $a_{n+1} = 2a_{n} + \sqrt{3(a_n)^2 - 12}$ for $n \in \Bbb{N}$.

Some attempts to massage the equation got me: $(a_{n+1}-a_n)^2 = 2a_na_{n+1} - 12$, which is equally messy.
What do you want to do? If it is to find the limit for an, then a nice 'trick' is to just drop all the subscripts. That is, if an goes to a as n goes to infinity, so does an-1, an-2, an-3, ..., an-k for any fixed k. Of course, that only works if there is a 'nice' limit. However this an goes to infinity which is not nice.

EDIT: Read more here
A003500 - OEIS
 
Last edited:
The original question was to show all members of the sequence are integers. However, I am interested in a "closed form" formula for this recurrence. (Since the sequence is increasing, its limit does not exist.)
 
magneto said:
The original question was to show all members of the sequence are integers. However, I am interested in a "closed form" formula for this recurrence. (Since the sequence is increasing, its limit does not exist.)
See EDIT above
 
Some thoughts: if you rewrite the equation as:
$$a_n = 2a_{n - 1} + \sqrt{3a_{n - 1}^2} - \delta(a_{n - 1})$$
Where $\delta$ is defined for $z \geq 2$ as:
$$\delta(z) = \sqrt{3z^2} - \sqrt{3z^2 - 12}$$
Then we have:
$$a_n = 2a_{n - 1} + \sqrt{3} a_{n - 1} - \delta(a_{n - 1}) = (2 + \sqrt{3}) a_{n - 1} - \delta(a_{n - 1})$$
Expanding out we find:
$$a_n = (2 + \sqrt{3}) \left ( (2 + \sqrt{3}) a_{n - 2} - \delta(a_{n - 2}) \right ) - \delta(a_{n - 1})$$
$$a_n = (2 + \sqrt{3})^2 a_{n - 2} - (2 + \sqrt{3})\delta(a_{n - 2}) - \delta(a_{n - 1})$$
Iterating we (eventually) get:
$$a_n = 2 \cdot (2 + \sqrt{3})^n - \sum_{k = 1}^n (2 + \sqrt{3})^{k - 1} \delta(a_{n - k})$$
So now the problem is to bound the error term in the sum. We see that $\delta(z)$ tends to $2 \sqrt{3} / z$ quite quickly, which combined with the asymptotic growth of the sequence of $a_m \approx (2 + \sqrt{3})^m$ yields the good approximation:
$$\delta(a_m) \approx \frac{2 \sqrt{3}}{(2 + \sqrt{3})^m}$$
Allowing us to approximate our expression as:
$$a_n \approx 2 \cdot (2 + \sqrt{3})^n - \sum_{k = 1}^n (2 + \sqrt{3})^{k - 1} \frac{2 \sqrt{3}}{(2 + \sqrt{3})^{n - k}} = 2 \cdot (2 + \sqrt{3})^n - \frac{2 \sqrt{3}}{(2 + \sqrt{3})^{n + 1}} \sum_{k = 1}^n (2 + \sqrt{3})^{2k}$$
Which is a geometric series, and we get:
$$a_n \approx 2 \cdot (2 + \sqrt{3})^n - \frac{(2 + \sqrt{3})^{2n} - 1}{(2 + \sqrt{3})^{n + 1}} \left [ \frac{12 + 7 \sqrt{3}}{3 + 2 \sqrt{3}} \right ]$$
Which seems to be a good, if not exact approximation, and probably actually reduces to the closed form in John Harris' OEIS link.​
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K