MHB Solving a Recurrence: $a_0 = 2$

  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Recurrence
magneto1
Messages
100
Reaction score
0
Not sure if Discrete Math is the correct category, but I'm looking for some idea / hint on how to tackle the following recurrence.

$a_0 = 2$, and $a_{n+1} = 2a_{n} + \sqrt{3(a_n)^2 - 12}$ for $n \in \Bbb{N}$.

Some attempts to massage the equation got me: $(a_{n+1}-a_n)^2 = 2a_na_{n+1} - 12$, which is equally messy.
 
Last edited:
Physics news on Phys.org
magneto said:
Not sure if Discrete Math is the correct category, but I'm looking for some idea / hint on how to tackle the following recurrence.

$a_0 = 2$, and $a_{n+1} = 2a_{n} + \sqrt{3(a_n)^2 - 12}$ for $n \in \Bbb{N}$.

Some attempts to massage the equation got me: $(a_{n+1}-a_n)^2 = 2a_na_{n+1} - 12$, which is equally messy.
What do you want to do? If it is to find the limit for an, then a nice 'trick' is to just drop all the subscripts. That is, if an goes to a as n goes to infinity, so does an-1, an-2, an-3, ..., an-k for any fixed k. Of course, that only works if there is a 'nice' limit. However this an goes to infinity which is not nice.

EDIT: Read more here
A003500 - OEIS
 
Last edited:
The original question was to show all members of the sequence are integers. However, I am interested in a "closed form" formula for this recurrence. (Since the sequence is increasing, its limit does not exist.)
 
magneto said:
The original question was to show all members of the sequence are integers. However, I am interested in a "closed form" formula for this recurrence. (Since the sequence is increasing, its limit does not exist.)
See EDIT above
 
Some thoughts: if you rewrite the equation as:
$$a_n = 2a_{n - 1} + \sqrt{3a_{n - 1}^2} - \delta(a_{n - 1})$$
Where $\delta$ is defined for $z \geq 2$ as:
$$\delta(z) = \sqrt{3z^2} - \sqrt{3z^2 - 12}$$
Then we have:
$$a_n = 2a_{n - 1} + \sqrt{3} a_{n - 1} - \delta(a_{n - 1}) = (2 + \sqrt{3}) a_{n - 1} - \delta(a_{n - 1})$$
Expanding out we find:
$$a_n = (2 + \sqrt{3}) \left ( (2 + \sqrt{3}) a_{n - 2} - \delta(a_{n - 2}) \right ) - \delta(a_{n - 1})$$
$$a_n = (2 + \sqrt{3})^2 a_{n - 2} - (2 + \sqrt{3})\delta(a_{n - 2}) - \delta(a_{n - 1})$$
Iterating we (eventually) get:
$$a_n = 2 \cdot (2 + \sqrt{3})^n - \sum_{k = 1}^n (2 + \sqrt{3})^{k - 1} \delta(a_{n - k})$$
So now the problem is to bound the error term in the sum. We see that $\delta(z)$ tends to $2 \sqrt{3} / z$ quite quickly, which combined with the asymptotic growth of the sequence of $a_m \approx (2 + \sqrt{3})^m$ yields the good approximation:
$$\delta(a_m) \approx \frac{2 \sqrt{3}}{(2 + \sqrt{3})^m}$$
Allowing us to approximate our expression as:
$$a_n \approx 2 \cdot (2 + \sqrt{3})^n - \sum_{k = 1}^n (2 + \sqrt{3})^{k - 1} \frac{2 \sqrt{3}}{(2 + \sqrt{3})^{n - k}} = 2 \cdot (2 + \sqrt{3})^n - \frac{2 \sqrt{3}}{(2 + \sqrt{3})^{n + 1}} \sum_{k = 1}^n (2 + \sqrt{3})^{2k}$$
Which is a geometric series, and we get:
$$a_n \approx 2 \cdot (2 + \sqrt{3})^n - \frac{(2 + \sqrt{3})^{2n} - 1}{(2 + \sqrt{3})^{n + 1}} \left [ \frac{12 + 7 \sqrt{3}}{3 + 2 \sqrt{3}} \right ]$$
Which seems to be a good, if not exact approximation, and probably actually reduces to the closed form in John Harris' OEIS link.​
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
18
Views
2K
Replies
13
Views
1K
Replies
22
Views
5K
Replies
12
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
Back
Top