MHB Solving a Separable Equation: What Went Wrong?

  • Thread starter Thread starter find_the_fun
  • Start date Start date
  • Tags Tags
    Separable
find_the_fun
Messages
147
Reaction score
0
[math]\frac{dy}{dx}+2xy=0[/math]
[math]\frac{dy}{dx}=-2xy[/math]
[math]dy=-2xy dx[/math]
[math]\frac{1}{y} dy=-2x dx[/math]
integrate both sides
[math]\ln{|y|}=-2x+c[/math]
[math]y=e^{-2x+c}=e^{-2x}e^C=e^{-2x}k=ke^{-2x}[/math]
Let's check using the original equation. First calculate the derivative
[math]\frac{dy}{dx}=k(-2e^{-2x}=-2ke^{-2x}[/math]
so from the original equation[math]-2ke^{-2x}+2xke^{-2x}=0[/math] is false.

It looks like I'm missing an x somewhere but I'm not sure where it went. What did I do wrong?
 
Physics news on Phys.org
Re: Checked answer for seperable equation but not getting right result; missing one x

find_the_fun said:
[math]\frac{dy}{dx}+2xy=0[/math]
[math]\frac{dy}{dx}=-2xy[/math]
[math]dy=-2xy dx[/math]
[math]\frac{1}{y} dy=-2x dx[/math]
integrate both sides
[math]\ln{|y|}=-2x+c[/math]

The integral of -2x is NOT -2x...
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top