MHB Solving a Separable Equation: What Went Wrong?

  • Thread starter Thread starter find_the_fun
  • Start date Start date
  • Tags Tags
    Separable
find_the_fun
Messages
147
Reaction score
0
[math]\frac{dy}{dx}+2xy=0[/math]
[math]\frac{dy}{dx}=-2xy[/math]
[math]dy=-2xy dx[/math]
[math]\frac{1}{y} dy=-2x dx[/math]
integrate both sides
[math]\ln{|y|}=-2x+c[/math]
[math]y=e^{-2x+c}=e^{-2x}e^C=e^{-2x}k=ke^{-2x}[/math]
Let's check using the original equation. First calculate the derivative
[math]\frac{dy}{dx}=k(-2e^{-2x}=-2ke^{-2x}[/math]
so from the original equation[math]-2ke^{-2x}+2xke^{-2x}=0[/math] is false.

It looks like I'm missing an x somewhere but I'm not sure where it went. What did I do wrong?
 
Physics news on Phys.org
Re: Checked answer for seperable equation but not getting right result; missing one x

find_the_fun said:
[math]\frac{dy}{dx}+2xy=0[/math]
[math]\frac{dy}{dx}=-2xy[/math]
[math]dy=-2xy dx[/math]
[math]\frac{1}{y} dy=-2x dx[/math]
integrate both sides
[math]\ln{|y|}=-2x+c[/math]

The integral of -2x is NOT -2x...
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K