MHB Solving an Equation with Fractions

  • Thread starter Thread starter kuheli
  • Start date Start date
  • Tags Tags
    Fractions
Click For Summary
The discussion focuses on solving the equation (x^3 + 3x)/341 = (3x^2 + 1)/91 using properties of proportions. Various methods are presented, including the use of the relationship between cubes and the application of the componendo dividendo technique. The problem is simplified by recognizing that 341 and 91 can be expressed as sums and differences of cubes, leading to the equation 216(x-1)^3 = 125(x+1)^3. Ultimately, the solution yields x = 11 through different approaches, confirming the validity of the methods used. The thread highlights the versatility of algebraic techniques in solving equations involving fractions.
kuheli
Messages
14
Reaction score
0
using properties of proportion solve

( x^3 + 3x )/341 = (3x^2 + 1)/91
 
Mathematics news on Phys.org
kuheli said:
using properties of proportion solve

( x^3 + 3x )/341 = (3x^2 + 1)/91

If $\displaystyle f(x) = (1+x)^{3}$ then is...

$\displaystyle \text{Even} \{f(x)\} = \frac{f(x) + f(-x)}{2}$

$\displaystyle \text{Odd} \{f(x)\}= \frac{f(x)-f(-x)}{2}\ (1)$

... so that with little effort we obtain... $\displaystyle 125\ f(x) = - 216\ f(-x) \implies 125\ (1+x)^{3}= - 216\ (1-x)^{3} \implies \frac{(1 + x)^{3}}{(1-x)^{3}} = - \frac{216}{125} \implies \frac{1+x}{1-x} = (- \frac {216}{125})^{\frac{1}{3}}\ = - \frac{6}{5}\ (2)$

Now all what we have to do is to solve a first order equation... Kind regards $\chi$ $\sigma$
 
Last edited:
Here is another method to approach the problem:

The existence of the terms $x^3+3x$ and $3x+1$ (as given in the problem) suggests that we might want to consider to relate the problem with $(x\pm1)^3$ and also, 341 and 91 be the sum or difference of cubes.

Observe that $341=216+125$ and $91=216-125$, hence we have

$$\frac{x^3+3x}{341}=\frac{3x^2+1}{91}$$

$$\frac{x^3+3x}{216+125}=\frac{3x^2+1}{216-125}$$

$$216(x^3+3x)-125(x^3+3x)=216(3x^2+1)+125(3x^2+1)$$

$$216(x^3+3x)-216(3x^2+1)=125(3x^2+1)+125(x^3+3x)$$

$$216(x^3-3x^2+3x-1)=125(x^3+3x^2+3x+1)$$

$$216(x-1)^3=125(x+1)^3$$

$$\frac{(x-1)^3}{(x+1)^3}=\frac{125}{216}=\frac{5^3}{6^3}$$

$$\frac{x-1}{x+1}=\frac{5}{6}$$

$$\therefore x=11$$
 
Last edited:
I feel a little unnecessary in providing an answer when there are already 2 good answers but because my method is different I would provide it

we have

$\frac{x^3 + 3x}{341} = \frac{3x^2 + 1}{91}$

which is same as

$\frac{x^3 + 3x}{3x^2 + 1} = \frac{341}{91}$

using componendo dividendo we have

$\frac{x^3 + 3x+3x^2 + 1}{x^3 + 3x -3x^2 - 1} = \frac{341+91}{341- 91}$

rearranging the terms on LHS and simplifying RHS we get

$\frac{x^3 + 3x^2+3x + 1}{x^3 - 3x^2+ 3x - 1} = \frac{432}{250}$

or
$\frac{(x+1)^3}{(x-1)^3} = \frac{216}{125}$

or $(\frac{x+1}{x-1})^3 = (\frac{6}{5})^3$

or $\frac{x+1}{x-1} = \frac{6}{5}$

I apply componendo dividendo again

$\frac{x+1+x - 1}{(x+1)- (x-1)} = \frac{6+5 }{6- 5}$
or
$\frac{2x}{2} = \frac{11 }{1}$

or x = 11
for componendo dividendo method if some is unfamiliar

we have if

$\frac{a}{b} = \frac{c }{d}$

then

$\frac{a+b}{a-b} = \frac{c +d }{c- d}$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
508
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
48
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K