Solving an Equation with Fractions

  • Context: MHB 
  • Thread starter Thread starter kuheli
  • Start date Start date
  • Tags Tags
    Fractions
Click For Summary

Discussion Overview

The discussion revolves around solving the equation involving fractions: (x^3 + 3x)/341 = (3x^2 + 1)/91. Participants explore various methods to approach the problem, including algebraic manipulation and properties of proportions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests using properties of proportion to solve the equation directly.
  • Another participant introduces a method involving the function f(x) = (1+x)³ and explores its even and odd properties, leading to a transformation of the original equation.
  • A different approach is proposed that relates the equation to the sum and difference of cubes, noting that 341 and 91 can be expressed in terms of 216 and 125, leading to a cubic equation.
  • Another participant presents a method using the componendo dividendo technique, transforming the original equation into a different form and ultimately arriving at the same solution of x = 11.

Areas of Agreement / Disagreement

Participants present multiple methods to solve the equation, with some arriving at the same solution (x = 11) while others focus on different approaches. There is no consensus on a single preferred method, and the discussion remains open to various techniques.

Contextual Notes

Some methods rely on specific algebraic identities and transformations that may not be universally applicable without additional context or assumptions. The discussion does not resolve the effectiveness or preference for any particular method.

kuheli
Messages
14
Reaction score
0
using properties of proportion solve

( x^3 + 3x )/341 = (3x^2 + 1)/91
 
Mathematics news on Phys.org
kuheli said:
using properties of proportion solve

( x^3 + 3x )/341 = (3x^2 + 1)/91

If $\displaystyle f(x) = (1+x)^{3}$ then is...

$\displaystyle \text{Even} \{f(x)\} = \frac{f(x) + f(-x)}{2}$

$\displaystyle \text{Odd} \{f(x)\}= \frac{f(x)-f(-x)}{2}\ (1)$

... so that with little effort we obtain... $\displaystyle 125\ f(x) = - 216\ f(-x) \implies 125\ (1+x)^{3}= - 216\ (1-x)^{3} \implies \frac{(1 + x)^{3}}{(1-x)^{3}} = - \frac{216}{125} \implies \frac{1+x}{1-x} = (- \frac {216}{125})^{\frac{1}{3}}\ = - \frac{6}{5}\ (2)$

Now all what we have to do is to solve a first order equation... Kind regards $\chi$ $\sigma$
 
Last edited:
Here is another method to approach the problem:

The existence of the terms $x^3+3x$ and $3x+1$ (as given in the problem) suggests that we might want to consider to relate the problem with $(x\pm1)^3$ and also, 341 and 91 be the sum or difference of cubes.

Observe that $341=216+125$ and $91=216-125$, hence we have

$$\frac{x^3+3x}{341}=\frac{3x^2+1}{91}$$

$$\frac{x^3+3x}{216+125}=\frac{3x^2+1}{216-125}$$

$$216(x^3+3x)-125(x^3+3x)=216(3x^2+1)+125(3x^2+1)$$

$$216(x^3+3x)-216(3x^2+1)=125(3x^2+1)+125(x^3+3x)$$

$$216(x^3-3x^2+3x-1)=125(x^3+3x^2+3x+1)$$

$$216(x-1)^3=125(x+1)^3$$

$$\frac{(x-1)^3}{(x+1)^3}=\frac{125}{216}=\frac{5^3}{6^3}$$

$$\frac{x-1}{x+1}=\frac{5}{6}$$

$$\therefore x=11$$
 
Last edited:
I feel a little unnecessary in providing an answer when there are already 2 good answers but because my method is different I would provide it

we have

$\frac{x^3 + 3x}{341} = \frac{3x^2 + 1}{91}$

which is same as

$\frac{x^3 + 3x}{3x^2 + 1} = \frac{341}{91}$

using componendo dividendo we have

$\frac{x^3 + 3x+3x^2 + 1}{x^3 + 3x -3x^2 - 1} = \frac{341+91}{341- 91}$

rearranging the terms on LHS and simplifying RHS we get

$\frac{x^3 + 3x^2+3x + 1}{x^3 - 3x^2+ 3x - 1} = \frac{432}{250}$

or
$\frac{(x+1)^3}{(x-1)^3} = \frac{216}{125}$

or $(\frac{x+1}{x-1})^3 = (\frac{6}{5})^3$

or $\frac{x+1}{x-1} = \frac{6}{5}$

I apply componendo dividendo again

$\frac{x+1+x - 1}{(x+1)- (x-1)} = \frac{6+5 }{6- 5}$
or
$\frac{2x}{2} = \frac{11 }{1}$

or x = 11
for componendo dividendo method if some is unfamiliar

we have if

$\frac{a}{b} = \frac{c }{d}$

then

$\frac{a+b}{a-b} = \frac{c +d }{c- d}$
 

Similar threads

Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
928
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K