MHB Solving an IVP with Green's Theorem: Wondering?

Click For Summary
The discussion revolves around solving an initial and boundary value problem using Green's theorem, specifically questioning whether the problem needs to be expanded to the entire real line. The user expresses a preference for using Green's theorem over separation of variables. They reference their notes, which suggest using odd extensions for the functions involved to satisfy boundary conditions. The odd extension is utilized to ensure the solution remains valid for the entire domain, even though the original problem is defined for x > 0. The conversation highlights the importance of function extension techniques in solving partial differential equations effectively.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

If we have the initial and boundary value problem $$u_{tt}(x,t)-c^2u_{xx}(x,t)=0, x>0, t>0 \\ u(0,t)=0 \\ u(x,0)=f(x), x\geq 0 \\ u_t(x,0)=g(x)$$ and we want to apply Green's theorem do we have to expand the problem to $x \in \mathbb{R}$ ?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

If we have the initial and boundary value problem $$u_{tt}(x,t)-c^2u_{xx}(x,t)=0, x>0, t>0 \\ u(0,t)=0 \\ u(x,0)=f(x), x\geq 0 \\ u_t(x,0)=g(x)$$ and we want to apply Green's theorem do we have to expand the problem to $x \in \mathbb{R}$ ?? (Wondering)

Couldn't you just separate the variables?
 
Yes, but I want to use this method.

- - - Updated - - -

In my notes they do it as followed:

$$w_{tt}-c^2w_{xx}=0, x \in \mathbb{R}, t>0 \\ w(x,0)=f_{\text{odd}}(x), x \in \mathbb{R} \\ w_t(x,0)=g_{\text{odd}} (x), x \in \mathbb{R}$$

$$w(x,t)=\frac{1}{2}(f_{\text{odd}}(x-ct)+f_{\text{odd}}(x+ct))+\frac{1}{2c}\int_{x-ct}^{x+ct}g_{\text{odd}}(s)ds \\ w(0,t)=\frac{1}{2}(f_{\text{odd}}(-ct)+f_{\text{odd}}(ct))+\frac{1}{2c}\int_{-ct}^{ct}g_{\text{odd}}(s)ds=0$$

So, for $x>0, t>0$

$$u(x,t)=w(x,t)=\frac{1}{2}(f_{\text{odd}}(x-ct)+f_{\text{odd}}(x+ct))+\frac{1}{2c}\int_{x-ct}^{x+ct}g_{\text{odd}}(s)ds$$

$$u(x,t)=\left\{\begin{matrix}
\frac{1}{2}{(f(x-ct)+f(x+ct))+\frac{1}{2c}{\int_{x-ct}^{x+ct}g(s)ds, \ \ x-ct \geq 0}}\\ \\
\frac{1}{2}(-f(ct-x)+f(x+ct))+\frac{1}{2c}\int_{ct-x}^{x+ct}g(s)ds \ \ \ \ \ \ \ \ \ \ \ \ \
\end{matrix}\right.$$

Why have we taken the odd extension although we solve $u$ and not $w$ ?? (Wondering)
 

Similar threads

Replies
0
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K