It appears there was something wrong with your initial model.
You know that your model involves exponential decay, so after each unit of time passes, there is a certain constant amount multiplying through. In other words
\displaystyle \begin{align*} R_1 &= C\,R_0 \\ R_2 &= C^2\,R_0 \\ R_3 &= C^3\,R_0 \\ \vdots \\ R_t &= C^t\,R_0 \end{align*}
Since you know that when \displaystyle \begin{align*} t = 1600, R_{1600} = \frac{1}{2}R_0 \end{align*}, that means
\displaystyle \begin{align*} \frac{1}{2}R_0 &= C^{1600}\,R_0 \\ \frac{1}{2} &= C^{1600} \\ \ln{ \left( \frac{1}{2} \right) } &= \ln{ \left( C^{1600} \right) } \\ \ln{ \left( \frac{1}{2} \right) } &= 1600 \ln{(C)} \\ \frac{1}{1600} \ln{ \left( \frac{1}{2} \right) } &= \ln{(C)} \\ \ln{ \left[ \left( \frac{1}{2} \right) ^{\frac{1}{1600}} \right] } &= \ln{(C)} \\ \left( \frac{1}{2} \right) ^{ \frac{1}{1600} } &= C \\ 2^{ -\frac{1}{1600}} &= C \end{align*}
and thus your model is \displaystyle \begin{align*} R(t) = \left( 2^{-\frac{1}{1600}} \right) ^t \, R_0 = 2^{-\frac{t}{1600}}\,R_0 \end{align*}.
Now if \displaystyle \begin{align*} t = 200 \end{align*}, that gives
\displaystyle \begin{align*} R(200) &= 2^{-\frac{200}{1600}}\,R_0 \\ &= 2^{-\frac{1}{8}}\,R_0 \\ &\approx 0.917 \, R_0 \end{align*}
So what percentage of the original amount do you have?