MHB Solving $\dfrac{dy}{dt}=y-5$, $y(0)=y_0$

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion focuses on solving the differential equation dy/dt = y - 5 with the initial condition y(0) = y_0. Two methods are presented, both leading to the same solution: y(t) = 5 + (y_0 - 5)e^t. Participants express appreciation for the clarity of the solution and share insights on integrating the equation. The conversation also touches on the nature of constants in the solution, emphasizing that while E can be non-positive, e^E remains positive. Overall, the thread highlights collaborative problem-solving and the value of community input in understanding differential equations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{b.1.2.2a}$
$\dfrac{dy}{dt}=y-5, \quad y(0)=y_0$$\begin{array}{rll}\displaystyle
y'&=y-5\\
y'-y&=-5\\
u(x)&=\exp\int-1\, dx&= e^{-t}\\
(e^{-t}y)'&=-5e^{-t}\\
e^{-t}y&=-5\int e^{-t} dt&= -5e^{-t}+c\\
y&=-5\dfrac{e^{-t}}{e^{-t}}+\dfrac{c}{e^{-t}}&=-5e+ce^t\\
y(0)&=5+C=y_0\\
\implies C&=y_0-5\\
y&=5+(y_0-5)e^t
\end{array}$

ok I think this is correct... wasn't sure about the 5 scalar
typo's maybe :unsure:
 
Last edited:
Physics news on Phys.org
I would have done this slightly differently:
From $\frac{dy}{dt}= y- 5$, $\frac{dy}{y- 5}= dt$.

To integrate on the left, let u= y- 5 so du= dy.
$\int\frac{dy}{y- 5}= \int \frac{du}{u}= ln(u)+C= ln(y- 5)+ C$.

$ln(y- 5)+ C= t+ D$ so $ln(y- 5)= t+E$ where E= D- C.

Taking the exponential of both sides, $y- 5= e^{t+ E}= Fe^t$ where $F=e^E$.

$y(x)= Fe^t+ 5$. Since $y(0)= F+ 5= y_0$, $F= y_0- 5$ so $y(x)= (y_0- 5)e^t+ 5$,

That is exactly what you have. Well done!
 
Country Boy said:
I would have done this slightly differently:
From $\frac{dy}{dt}= y- 5$, $\frac{dy}{y- 5}= dt$.

To integrate on the left, let u= y- 5 so du= dy.
$\int\frac{dy}{y- 5}= \int \frac{du}{u}= ln(u)+C= ln(y- 5)+ C$.

$ln(y- 5)+ C= t+ D$ so $ln(y- 5)= t+E$ where E= D- C.

Taking the exponential of both sides, $y- 5= e^{t+ E}= Fe^t$ where $F=e^E$.

$y(x)= Fe^t+ 5$. Since $y(0)= F+ 5= y_0$, $F= y_0- 5$ so $y(x)= (y_0- 5)e^t+ 5$,

That is exactly what you have. Well done!

Well yeah that makes more sense... Haven't see the
$Fe^t$ where $F=e^E$. before

I started to make a PDF of the MHB DE replies
thot I would try to get some input ...
my goal is get a 100 problems listed
also I have a counter that adds up the views
I have acknowledged those who reply
Mahalo

https://dl.orangedox.com/wr9JnddSXWGHrASWF2
 
E is just an undetermined constant so $e^E$ is just another undetermined constant.
 
Country Boy said:
E is just an undetermined constant so $e^E$ is just another undetermined constant.
However, notice that we may have [math]E \leq 0[/math] but [math]e^E > 0[/math] for any E. So they aren't quite equivalent.

-Dan
 
well that's what I like about MHB
it continues where the textbook left off

there is still a lot of these IVP i need to do..
 
Get busy!
 

Similar threads

Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K