- #1
karush
Gold Member
MHB
- 3,269
- 5
determine the behavior of y as t →∞.
If this behavior depends on the initial value of y at t = 0,describe the dependency
\begin{array}{lll}
\textit{rewrite}
&y'-2y=-3\\ \\
u(t)
&=\exp\int -2 \, dx=e^{-2t}\\ \\
\textit{product}
&(e^{-2t}y)'=-3e^{-2t}\\ \\
\textit{integrate}
&e^{-2t}y=\int -3e^{-2t} \, dt =\dfrac{3e^{-2t}}{2}+c\\ \\
%e^{-2t}y&=\dfrac{3e^{-2t}}{2}+c\\ \\
\textit{isolate}
&y(t)=\dfrac{3}{2}+\dfrac{c}{e^{-2t}}\\ \\
t \to \infty&=\dfrac{3}{2}+0 =\dfrac{3}{2} \\ \\
\textit{so}
&y \textit{ diverges from } \dfrac{3}{2} \textit{ as t} \to \infty
\end{array}
ok think I got it ok
suggestions, typos, mother in law comments welcome
https://drive.google.com/file/d/17AneIqlG0aGlPXEQ8q8_kgCINV_ojeqx/view?usp=sharing
If this behavior depends on the initial value of y at t = 0,describe the dependency
\begin{array}{lll}
\textit{rewrite}
&y'-2y=-3\\ \\
u(t)
&=\exp\int -2 \, dx=e^{-2t}\\ \\
\textit{product}
&(e^{-2t}y)'=-3e^{-2t}\\ \\
\textit{integrate}
&e^{-2t}y=\int -3e^{-2t} \, dt =\dfrac{3e^{-2t}}{2}+c\\ \\
%e^{-2t}y&=\dfrac{3e^{-2t}}{2}+c\\ \\
\textit{isolate}
&y(t)=\dfrac{3}{2}+\dfrac{c}{e^{-2t}}\\ \\
t \to \infty&=\dfrac{3}{2}+0 =\dfrac{3}{2} \\ \\
\textit{so}
&y \textit{ diverges from } \dfrac{3}{2} \textit{ as t} \to \infty
\end{array}
ok think I got it ok
suggestions, typos, mother in law comments welcome
https://drive.google.com/file/d/17AneIqlG0aGlPXEQ8q8_kgCINV_ojeqx/view?usp=sharing
Last edited: