MHB Solving Second Order ODE: True or False?

Click For Summary
The discussion revolves around understanding the notation in the second-order differential equation $\ddot{x}+\dot{x}+x = 9t$, where dots indicate derivatives with respect to time. The equation can be rewritten to clarify that $x$ is a function of time, leading to the equivalent system of equations. The first statement about equivalence is confirmed by differentiating and substituting back into the original equation. The equation is confirmed to be linear, and while the method of undetermined coefficients is suggested for solving it, other methods like the annihilator method or variation of parameters are also valid. Overall, the key points focus on notation clarification and the linearity of the differential equation.
Guest2
Messages
192
Reaction score
0
I'm supposed determine whether following statements are true or false. However, I can't get past the notation.

Question: the second order differential equation $\ddot{x}+\dot{x}+x = 9t$ is:

(a) equivalent to $\begin{cases} \dot{x} = y, & \\ \dot{y}=-y-x+9t, &\end{cases}$ (b) solved by integrating factors, (c) linear.

I don't understand what the dots mean to properly do the question. So what do you they mean? I'd also appreciate any help on the question itself.
 
Physics news on Phys.org
It's a convention, using Newton's notation, that primes denote derivatives w.r.t. $x$, or space, and dots represent derivatives w.r.t. $t$, or time. So your DE is equivalent to
$$\frac{d^2x(t)}{dt^2}+\d{x(t)}{t}+x(t)=9t,$$
where I have written $x=x(t)$ to emphasize that we are thinking of $x$ as a function of time. As for seeing if a is true, try differentiating the first equation, and substituting into the second, to see if you can recover the original DE. I'm not sure about b, but c is definitely true.
 
I agree it is linear, and in its original form, I would solve it using the method of undetermined coefficients, but you could also use the annihilator method, or variation of parameters. :)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K