# What is Second order: Definition and 602 Discussions

In logic and mathematics second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.
First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence

P

x
(
P
x

¬
P
x
)

{\displaystyle \forall P\,\forall x(Px\lor \neg Px)}
says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables as explained in the section Syntax and fragments. Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified.

View More On Wikipedia.org
1. ### Solve these two coupled first-order differential equations and sketch the flow

Hi, unfortunately, I have a problem to solve the following task The equation looks like this: $$\left(\begin{array}{c} \frac{d}{dt} x(t) \\ \frac{d}{dt} y(t) \end{array}\right)=\left(\begin{array}{c} -a y(t) \\ x(t) \end{array}\right)$$ Since the following is true ##\frac{d}{dt}...
2. ### I Fundamental matrix of a second order 2x2 system of ODEs

Let ## \mathbf{x''} = A\mathbf{x} ## be a homogenous second order system of linear differential equations where ## A = \begin{bmatrix} a & b\\ c & d \end{bmatrix} ## and ## \mathbf{x} = \begin{bmatrix} x(t)\\ y(t)) \end{bmatrix} ## Now to solve this equation we transform it into a 4x4...
3. ### I Second order non-homogeneous linear ordinary differential equation

I shall not begin with expressing my annoyance at the perfect equality between the number of people studying ODE and the numbers of ways of solving the Second Order Non-homogeneous Linear Ordinary Differential Equation (I'm a little doubtful about the correct syntactical position of 'linear')...
4. ### I Second Order ODE with Exponential Coefficients

Hi all, I have another second order ODE that I need help with simplifying/solving: ##p''(x) - D\frac{e^{\gamma x}}{A-Ae^{\gamma x}}p'(x) - Fp(x) = 0## where ##\gamma,A,F## can all be assumed to be nonzero real numbers and ##D## is a purely nonzero imaginary number. Any help would be appreciated!
5. ### I Converting Second Order ODE to Hypergeometric Function

I believe it is the case that any linear second order ode with at most 3 regular singular points can be transformed into a hypergeometric function. I am trying to solve the following equation for a(x): where E, m, v, k_{y} are all constants and I believe turning it into hypergeometric form will...
6. ### Classification of a second order partial differential equation

Hello! Consider this partial differential equation $$zu_{xx}+x^2u_{yy}+zu_{zz}+2(y-z)u_{xz}+y^3u_x-sin(xyz)u=0$$ Now I've got the solution and I have a few questions regarding how we get there. Now we've always done it like this.We built the matrix and then find the eigenvalues. And here is...
7. ### I Solve second order linear differential equation

Consider the second order linear ODE with parameters ##a, b##: $$xy'' + (b-x)y' - ay = 0$$ By considering the series solution ##y=\sum c_mx^m##, I have obtained two solutions of the following form: \begin{aligned} y_1 &= M(x, a, b) \\ y_2 &= x^{1-b}M(x, a-b+1, 2-b) \\ \end{aligned}...
8. ### Engineering Question - Calculating Coefficients for 2nd Order Transient Analysis

Hello everyone, I am struggling with calculating the coefficients for second order transient analysis. For example, when analyzing a underdamped circuit, we know that the equation for voltage or current is xt=e-αt(K1cos(sqrt(ω2-α2)t ) + K2sin(sqrt(ω2-α2)t)). Then in order to determine for...
9. ### ODE solver for second Order ODE with Stiffness and Mass Matrices

i am new to MATLAB and and as shown below I have a second order differential equation M*u''+K*u=F(t) where M is the mass matrix and K is the stifness matrix and u is the displacement. and i have to write a code for MATLAB using ODE45 to get a solution for u. there was not so much information on...
10. ### I How to solve this second order differential equation

Any idea how to solve this equation: ## \ddot \sigma - p e^\sigma - q e^{2\sigma} =0 ## Or ## \frac{d^2 \sigma}{dt^2} - p e^\sigma - q e^{2\sigma} =0 ## Where p and q are constants.Thanks.
11. ### MHB Converting a Second-Order IVP into a System of Equations: Can Substitution Help?

source Change the second-order IVP into a system of equations $y''+y'-2y=0 \quad y(0)= 2\quad y'(0)=0$ let $u=y'$ ok I stuck on this substitution stuff
12. ### Second order differential equation solution

I know the solution to the equation (1) below can be written in terms of exponential functions or sin and cos as in (2). But I can't remember exactly how to get there using separation of variables. If I separate the quotient on the left and bring a Psi across, aka separation of variables (as I...

36. ### I Second order ordinary differential equation to a system of first order

I tried to convert the second order ordinary differential equation to a system of first order differential equations and to write it in a matrix form. I took it from the book by LM Hocking on (Optimal control). What did I do wrong in this attachment because mine differs from the book?. I've...
37. ### MATLAB Solving 2nd Order PDE System with Crank-Nicholson

I have the following system of PDEs: \hat{\rho}\hat{c}_{th}\frac{\partial\hat{T}}{\partial\hat{x}}-\alpha_{1}\frac{\partial}{\partial\hat{x}}\left(\hat{k}(\hat{x})\frac{\partial\hat{T}}{\partial\hat{x}}\right)=\alpha_{1}\hat{\sigma}(\hat{x})\hat{E}...
38. ### Series solution of a second order ordinary DE

Homework Statement Use the power series method to solve the initial value problem: ##(x^2 +1)y'' - 6xy' + 12y = 0, y(0) = 1, y'(0) = 1## Homework EquationsThe Attempt at a Solution The trouble here is that after the process above I end up with ##c_{k+2} = -...
39. ### Second order reaction, conversion in a CSTR

Homework Statement We have a second order reaction: A + B → C + D with -rA = k[A][ B] [A]0 = [ B]0 = 300 mol / m3; τ = 11 minutes. k = 4.0 × 10-4 m3 / (mol × minutes) What is the conversion in a CSTR?Homework Equations I think: τ = ([A]0 - [A]1) / -rA,1 τ = (XA × [A]0) / -rA,1 But since I...
40. ### Series Solution to Second Order DE

Homework Statement Consider a power series solution about x0 = 0 for the differential equation y'' + xy' + 2y = 0. a) Find the recurrence relations satisfied by the coefficients an of the power series solution. b) Find the terms a2, a3, a4, a5, a6, a7, a8 of this power series in terms of the...
41. ### Second order ODE: finding solution.

Homework Statement d2u/d2x + 1/2Lu = 0 where L is function of x Homework Equations I am try to find solutions y1 and y2 of this equation. The Attempt at a Solution y = [cos √(L/2) x] + [sin √(L/2) x] y' = - [√(L/2) sin √(L/2) x] + [ √(L/2) cos √(L/2) x] y'' = -[(L/2) cos √(L/2) x] -...
42. J

### Finding the singular points for this differential equation

Homework Statement If d^2/dx^2 + ln(x)y = 0[/B]Homework Equations included in attempt The Attempt at a Solution I was confused as to whether I include the power series for ln(x) in the solution. It makes comparing coefficients very nasty though. Whenever I expand for m=0 for the a0 I end...
43. ### I Resolution of a PDE with second order Runge-Kutta

Hi, I want to solve the p.d.e.: ##\frac{\partial u(x,t)}{\partial t} - \frac{\partial^2 u(x,t)}{\partial x^2}=f(x,t)##, with periodic boundary conditions ##u(x,t)=u(L,t)##. using a second order Runge-Kutta method in time. However, I am not having the proper results when I apply this method to...
44. ### I Question about second order linear differential equations

Hi everybody. I need to learn how to solve this kind of equation by decomposing y in a serie of functions. All the examples I have seen are of homogeneous functions. I would be extremely thankfull if someone pointed me to some text in which this is done-explained. Thanks for reading.
45. ### Second Order Differential Equations - Beam Deflections

Homework Statement A cantilever of length ##L## is rigidly fixed at one end and is horizontal in the unstrainted position. If a load is added at the free end of the beam, the downward deflection, ##y##, at a distance, ##x##, along the beam satisfies the differential equation...
46. ### I Second order PDE with variable coefficients

Hello, I have an equation of the form: ##\partial_t f(x,t)+a\partial_x^2 f(x,t)+g(x)\partial_xf(x,t)=0 ## (In my particular case ##g(x)=kx## with ##k>0## and ##a=2k=2g'(x)##) I'd like to know if there is some general technique that i can use to solve my problem (for example: in the first...
47. ### I Second order, non-linear, non-homogeneous differential eq.

I have a physics project at university, we designed an experiment to measure the effectiveness of Poiseuilles law in a 'quasi non-steady state'. Poiseuilles law, simply being the measurement of the flow rate of a fluid in a pipe, holding only under steady state though. So by quasi steady state I...
48. ### Second order(?) ODE + Runge-Kutta method question

Homework Statement When a rocket launches, it burns fuel at a constant rate of (kg/s) as it accelerates, maintaining a constant thrust of T. The weight of the rocket, including fuel is 1200 kg (including 900 kg of fuel). So, the mass of the rocket changes as it accelerates: m(t) = 1200 - m_ft...
49. ### I Constructing a 2nd order homogenous DE given fundamental solution

Homework Statement Given a set of fundamental solutions {ex*sinx*cosx, ex*cos(2x)} Homework Equations y''+p(x)y'+q(x)=0 det W(y1,y2) =Ce-∫p(x)dx The Attempt at a Solution I took the determinant of the matrix to get e2x[cos(2x)cosxsinx-2sin(2x)sinxcosx-cos(2x)sinxcosx-...
50. ### I Derivation of second order Adams-Bashforth

My notes state that the method is constructed based on the idea: yk+1=yk+∫f(x,y)dx where the integral is taken from xk to xk+1 We can estimate the integral by considering ∫f(x)dx (from xk to xk+1) =c0fk+c1fk-1 To simplify the equation, we move xk to the origin such that ∫f(x)dx (from 0 to h)...