mathmari
Gold Member
MHB
- 4,984
- 7
Hello!
I have the following Bernoulli equation:
2xyy'+(1+x)y^2=e^{x}, x>0
lim_{x -> 0^{+}} y(x) <\inftyThe transformation is u=y^{2}.
So, u'+(\frac{1}{x}+1)u=\frac{e^{2x}}{x}.How can I find the initial value u(1) so that lim_{x -> 0^{+}} u(x) <\infty ??
I have the following Bernoulli equation:
2xyy'+(1+x)y^2=e^{x}, x>0
lim_{x -> 0^{+}} y(x) <\inftyThe transformation is u=y^{2}.
So, u'+(\frac{1}{x}+1)u=\frac{e^{2x}}{x}.How can I find the initial value u(1) so that lim_{x -> 0^{+}} u(x) <\infty ??