MHB Solving the Lawn Mowing Puzzle: Explained!

  • Thread starter Thread starter amirus15
  • Start date Start date
  • Tags Tags
    Puzzle
Click For Summary
Person A mows a lawn in one hour less than Person B, while Person C takes twice as long as Person B. Their combined mowing rate equals one lawn per hour, leading to the equation 1/t + 1/(t-1) + 1/(2t) = 1. By solving for t, the time it takes Person B to mow the lawn, the individual times for A and C can also be determined. The discussion emphasizes the importance of expressing their rates in terms of a single variable to simplify the problem. The solution reveals the specific times each person takes to mow the lawn alone.
amirus15
Messages
1
Reaction score
0
So person A takes 1 less hour than person B to mow a lawn, Person C takes twice as long as Person B to mow a lawn. All together they mow a lawn in one hour. How long does it take each of them to mow a lawn working alone? Can someone explain this to me please, thanks.
 
Mathematics news on Phys.org
Hi and welcome to the forum.

Let the productivity of A, B, C, measured in lawns per hour, be $a$, $b$ and $c$, respectively. Then A mows the lawn in $1/a$ hours, B does it in $1/b$ hours and C takes $1/c$ hours. Their combined productivity is $a+b+c$, and by assumption $1/(a+b+c)=1$, i.e.,
\[
a+b+c=1.\qquad(*)
\]
Now write the conditions
  1. Person A takes 1 less hour than person B to mow a lawn.
  2. Person C takes twice as long as Person B to mow a lawn
in terms of $a$, $b$ and $c$ and express $a$ and $c$ through $b$. Substituting these expressions into (*) will give you one equation in $b$. It has two solutions, but only one of them has physical sense.
 
Equivalently: let t be the time, in hours, it takes person B to mow the lawn.
so B has rate 1/t "lawns per hour".

person A takes 1 less hour than person B to mow a lawn
So A's time is t- 1 and rate is 1/(t- 1)

Person C takes twice as long as Person B to mow a lawn
So C's time is 2t and rate is 1/(2t)

All together they mow a lawn in one hour.
This last sentence tells us that, together, their rate of work is "1 hour per job".
When people, machines, etc. "work together", their rates of work add.
1/t+ 1/(t-1)+ 1/2t= 1. Solve that for t, the time It takes B to mow a lawn then find the times for A and B.

(Multiplying both sides of the equation by 2t(t-1) will eliminate the fractions.)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K