Solving the Shock Wave Problem for $u_t + uu_x = 0$

Click For Summary

Discussion Overview

The discussion revolves around solving the equation $u_t + uu_x = 0$ with a specific initial condition that varies across different intervals of $x$. Participants explore the behavior of the solution over time, particularly focusing on the formation of shock waves and the conditions under which they occur, including the entropy condition.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a method to solve the equation and describes the characteristic lines, noting the piecewise nature of the initial condition.
  • Another participant questions the behavior of $u$ as $t$ approaches 1, suggesting that the solution may break down at that point.
  • Several participants agree that a shock wave occurs at $t=1$, but there is uncertainty about the definition and implications of the entropy condition.
  • A participant finds a definition of the entropy condition and applies it to the situation, concluding that it is satisfied at $t=1$ based on the values of $u^-$ and $u^+$.
  • There is a general agreement among some participants regarding the satisfaction of the entropy condition, but the discussion remains open to further clarification.

Areas of Agreement / Disagreement

Participants generally agree that a shock wave occurs at $t=1$ and that the entropy condition is satisfied, but there is some uncertainty about the definition of the entropy condition and its implications.

Contextual Notes

There are unresolved questions regarding the behavior of the solution for $t > 1$ and how the initial conditions interact at that time, which may affect the continuity of $u$.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to solve the equation $u_t+uu_x=0$ with the initial condition $u(x,0)=1$ for $x \leq 0$, $1-x$ for $0 \leq x \leq 1$ and $0$ for $x \geq 1$. I want to solve it for all $t \geq 0$, allowing for a shock wave. I also want to find exactly where the shock is and show that it satisfies the entropy condition.

I have tried the following.

We get that $u(x(t),t)=c$.

The characteristic line that passes through the points $(x,t)$ and $(x_0,0)$ has slope

$\frac{x-x_0}{t-0}=\frac{dx}{dt}=u(x,t)=u(x_0,0)=\left\{\begin{matrix}
1, & \text{ if } x_0 \leq 0,\\
1-x_0, & \text{ if } 0 \leq x_0 \leq 1,\\
0, & \text{ if } x_0 \geq 1.
\end{matrix}\right.$$\Rightarrow x-x_0=\left\{\begin{matrix}
t, & \text{ if } x_0 \leq 0,\\
t(1-x_0), & \text{ if } 0 \leq x_0 \leq 1,\\
0, & \text{ if } x_0 \geq 1.
\end{matrix}\right.$

$\Rightarrow u(x,t)=\left\{\begin{matrix}
1, & \text{ if } x \leq t,\\
\frac{1-x}{1-t}, & \text{ if } t \leq x \leq 1,\\
0, & \text{ if } x \geq 1.
\end{matrix}\right.$Do we have a shock at the time when $u$ is not continuous? But how can we find such a time?
 
Last edited:
Physics news on Phys.org
evinda said:
Hello! (Wave)

I want to solve the equation $u_t+uu_x=0$ with the initial condition $u(x,0)=1$ for $x \leq 0$, $1-x$ for $0 \leq x \leq 1$ and $0$ for $x \geq 1$. I want to solve it for all $t \geq 0$, allowing for a shock wave. I also want to find exactly where the shock is and show that it satisfies the entropy condition.

I have tried the following.

We get that $u(x(t),t)=c$.

The characteristic line that passes through the points $(x,t)$ and $(x_0,0)$ has slope

$\frac{x-x_0}{t-0}=\frac{dx}{dt}=u(x,t)=u(x_0,0)=\left\{\begin{matrix}
1, & \text{ if } x_0 \leq 0,\\
1-x_0, & \text{ if } 0 \leq x_0 \leq 1,\\
0, & \text{ if } x_0 \geq 1.
\end{matrix}\right.$$\Rightarrow x-x_0=\left\{\begin{matrix}
t, & \text{ if } x_0 \leq 0,\\
t(1-x_0), & \text{ if } 0 \leq x_0 \leq 1,\\
0, & \text{ if } x_0 \geq 1.
\end{matrix}\right.$

$\Rightarrow u(x,t)=\left\{\begin{matrix}
1, & \text{ if } x \leq t,\\
\frac{1-x}{1-t}, & \text{ if } t \leq x \leq 1,\\
0, & \text{ if } x \geq 1.
\end{matrix}\right.$Do we have a shock at the time when $u$ is not continuous? But how can we find such a time?

Hey evinda!

What will happen to $u$ when $t$ reaches $1$? (Wondering)

Btw, your solution doesn't cover $t>1$ does it?
The second condition breaks down, and the first and third condition will overlap. (Worried)
 
The shock wave happens when $t=1$.

Which is the entropy condition? (Thinking)
 
evinda said:
The shock wave happens when $t=1$.

Which is the entropy condition?

I don't know what an entropy condition is. (Crying)

Do you have a definition? (Wondering)
 
I like Serena said:
I don't know what an entropy condition is. (Crying)

Do you have a definition? (Wondering)

I found the definition at page $12$: https://web.stanford.edu/class/math220a/handouts/conservation.pdf.

In our case, ee have $f'(u)=u$.
At $t=1$ we have $u^-=1$ and $u^+=0$, and so we have $u^- > u^+$, which means that the entropy condition is satisfied.

Right? (Thinking)
 
I like Serena said:
Yes, I believe so. (Nod)

Nice, thank you! (Smile)
 

Similar threads

Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
17
Views
6K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 65 ·
3
Replies
65
Views
8K