Solving Transport Eq. for Level Curves: x=X(t)

  • Context: MHB 
  • Thread starter Thread starter simo1
  • Start date Start date
  • Tags Tags
    Transport
Click For Summary
SUMMARY

The discussion focuses on solving the transport equation for level curves defined by the equation $\displaystyle u_{t} + c(x)\ u_{x} = 0$ where $c(x)$ represents a variable sound speed. The approach involves introducing a new variable $r$ to transform the problem into a system of ordinary differential equations (ODEs). The resulting ODEs are $\displaystyle \frac{d t}{d r} = 1$ and $\displaystyle \frac{d x}{d r}= c(x,r)$. The solution for the characteristic curve is derived as $x(t) = \sinh^{-1}(\sinh x_0 e^{c(0)t})$, although an alternative expression $x = x_{0} e^{c(0)t}$ is suggested for simplicity.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with ordinary differential equations (ODEs)
  • Knowledge of characteristic curves in the context of PDEs
  • Basic calculus, including integration techniques
NEXT STEPS
  • Study the derivation and applications of characteristic curves in PDEs
  • Learn about the method of characteristics for solving first-order PDEs
  • Explore the implications of variable coefficients in transport equations
  • Investigate numerical methods for solving PDEs with variable sound speeds
USEFUL FOR

Mathematicians, physicists, and engineers dealing with wave propagation, particularly those interested in the behavior of solutions to transport equations with variable coefficients.

simo1
Messages
21
Reaction score
0
I have this equation
ux(x,t) + c(x)ux(x,t) = 0 x>0

I want to obtain information on how the initial input uo(x)=u(x,o) would deform when the sound speed is not constant. c(x) is the sound speedi wanted to start this by finding a DE for the level curves x=X(t) so that i can solve in terms the initial point x0=X(0)(greater than or equal to) 0

but how can i solve for these level curves
 
Physics news on Phys.org
simo said:
I have this equation...

$\displaystyle u_{t}\ (x,t) + c(x)\ u_{x}\ (x,t) = 0,\ x>0$

I want to obtain information on how the initial input uo(x)=u(x,o) would deform when the sound speed is not constant. c(x) is the sound speedi wanted to start this by finding a DE for the level curves x=X(t) so that i can solve in terms the initial point x0=X(0)(greater than or equal to) 0

but how can i solve for these level curves

The standard approach for a PDE like...

$\displaystyle u_{t} + c(x,t)\ u_{x} = 0\ (1)$

... is to find curves along which u is constant. If we introduce a new variable r for which is $t=t(r)$ and $x=x(r)$ , then for chaining rule is...

$\displaystyle \frac{d u}{d r} = u_{t}\ \frac {d t}{d r} + u_{x}\ \frac{d x}{d r}\ (2)$

... and combining (1) and (2) we arrive to the ODE pair...

$\displaystyle \frac{d t}{d r} = 1,\ \frac{d x}{d r}= c(x,r)\ (3)$

In Your case c(*) is function of the x alone so that is...

$\displaystyle \int \frac{d x}{c(x)} = r + \gamma\ (4)$

... where $\gamma$ is an arbitrary constant...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The standard approach for a PDE like...

$\displaystyle u_{t} + c(x,t)\ u_{x} = 0\ (1)$

... is to find curves along which u is constant. If we introduce a new variable r for which is $t=t(r)$ and $x=x(r)$ , then for chaining rule is...

$\displaystyle \frac{d u}{d r} = u_{t}\ \frac {d t}{d r} + u_{x}\ \frac{d x}{d r}\ (2)$

... and combining (1) and (2) we arrive to the ODE pair...

$\displaystyle \frac{d t}{d r} = 1,\ \frac{d x}{d r}= c(x,r)\ (3)$

In Your case c(*) is function of the x alone so that is...

$\displaystyle \int \frac{d x}{c(x)} = r + \gamma\ (4)$

... where $\gamma$ is an arbitrary constant...Kind regards

$\chi$ $\sigma$
I solved the equation and I had x(t) = sinh-1(sinhx0ec(0)t) is it possible to draw the characteristic curve of this function
 
simo said:
I solved the equation and I had x(t) = sinh-1(sinhx0ec(0)t)...

Ehm!... what's the reason why You don't write simply $\displaystyle x= x_{0}\ e^{\ c(0)\ t}$?...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
8
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K