Solving Transport Eq. for Level Curves: x=X(t)

  • Context: MHB 
  • Thread starter Thread starter simo1
  • Start date Start date
  • Tags Tags
    Transport
Click For Summary

Discussion Overview

The discussion revolves around solving a transport equation related to the deformation of an initial input when the sound speed is not constant. Participants explore the derivation of level curves defined by the equation and the implications of varying sound speed on the solution.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the equation \( u_t + c(x) u_x = 0 \) and seeks to understand how the initial condition \( u_0(x) = u(x,0) \) deforms with a non-constant sound speed \( c(x) \).
  • Another participant outlines a standard approach for solving the PDE by introducing a new variable \( r \) and deriving a pair of ordinary differential equations (ODEs) for the level curves.
  • A later reply mentions a specific solution \( x(t) = \sinh^{-1}(\sinh x_0 e^{c(0)t}) \) and questions the notation used in presenting the solution.
  • There is a suggestion that a simpler form \( x = x_0 e^{c(0)t} \) could have been used, indicating a potential disagreement on the presentation of the solution.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best way to express the solution to the transport equation, with differing opinions on the notation and form of the solution presented.

Contextual Notes

The discussion includes assumptions about the nature of the sound speed \( c(x) \) and its dependence on \( x \), which may affect the validity of the derived equations. The implications of these assumptions on the solutions remain unresolved.

simo1
Messages
21
Reaction score
0
I have this equation
ux(x,t) + c(x)ux(x,t) = 0 x>0

I want to obtain information on how the initial input uo(x)=u(x,o) would deform when the sound speed is not constant. c(x) is the sound speedi wanted to start this by finding a DE for the level curves x=X(t) so that i can solve in terms the initial point x0=X(0)(greater than or equal to) 0

but how can i solve for these level curves
 
Physics news on Phys.org
simo said:
I have this equation...

$\displaystyle u_{t}\ (x,t) + c(x)\ u_{x}\ (x,t) = 0,\ x>0$

I want to obtain information on how the initial input uo(x)=u(x,o) would deform when the sound speed is not constant. c(x) is the sound speedi wanted to start this by finding a DE for the level curves x=X(t) so that i can solve in terms the initial point x0=X(0)(greater than or equal to) 0

but how can i solve for these level curves

The standard approach for a PDE like...

$\displaystyle u_{t} + c(x,t)\ u_{x} = 0\ (1)$

... is to find curves along which u is constant. If we introduce a new variable r for which is $t=t(r)$ and $x=x(r)$ , then for chaining rule is...

$\displaystyle \frac{d u}{d r} = u_{t}\ \frac {d t}{d r} + u_{x}\ \frac{d x}{d r}\ (2)$

... and combining (1) and (2) we arrive to the ODE pair...

$\displaystyle \frac{d t}{d r} = 1,\ \frac{d x}{d r}= c(x,r)\ (3)$

In Your case c(*) is function of the x alone so that is...

$\displaystyle \int \frac{d x}{c(x)} = r + \gamma\ (4)$

... where $\gamma$ is an arbitrary constant...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The standard approach for a PDE like...

$\displaystyle u_{t} + c(x,t)\ u_{x} = 0\ (1)$

... is to find curves along which u is constant. If we introduce a new variable r for which is $t=t(r)$ and $x=x(r)$ , then for chaining rule is...

$\displaystyle \frac{d u}{d r} = u_{t}\ \frac {d t}{d r} + u_{x}\ \frac{d x}{d r}\ (2)$

... and combining (1) and (2) we arrive to the ODE pair...

$\displaystyle \frac{d t}{d r} = 1,\ \frac{d x}{d r}= c(x,r)\ (3)$

In Your case c(*) is function of the x alone so that is...

$\displaystyle \int \frac{d x}{c(x)} = r + \gamma\ (4)$

... where $\gamma$ is an arbitrary constant...Kind regards

$\chi$ $\sigma$
I solved the equation and I had x(t) = sinh-1(sinhx0ec(0)t) is it possible to draw the characteristic curve of this function
 
simo said:
I solved the equation and I had x(t) = sinh-1(sinhx0ec(0)t)...

Ehm!... what's the reason why You don't write simply $\displaystyle x= x_{0}\ e^{\ c(0)\ t}$?...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
8
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K