Some considerations about conditional normal distribution....

Click For Summary
SUMMARY

This discussion addresses the question posed by user simon11 regarding the conditional distribution of two dependent random variables, X and Y, under the assumption that P(X), P(Y), and P(Y|X) are all normal. The consensus reached is that if the marginal distributions are normal and one conditional distribution is normal, then the joint distribution is not necessarily normal. The discussion emphasizes the need for a formal proof, particularly focusing on the symmetry of conditional distributions and the role of correlation (ρ) in determining the joint distribution's characteristics.

PREREQUISITES
  • Understanding of conditional probability distributions
  • Familiarity with normal distributions and their properties
  • Knowledge of joint probability density functions
  • Basic concepts of correlation and covariance
NEXT STEPS
  • Study the properties of conditional distributions in depth
  • Learn about the implications of correlation on joint distributions
  • Research the conditions under which joint normality holds
  • Examine formal proofs related to conditional distributions and joint distributions
USEFUL FOR

Statisticians, data scientists, and researchers in probability theory who are exploring the relationships between dependent random variables and their distributions.

chisigma
Gold Member
MHB
Messages
1,627
Reaction score
0
Scope of this thread is to give a complete as possible answer to the question proposed two days ago by the user simon11 on Basic Probability and Statistic forum...

Assume two random variables X and Y are not independent, if P(X), P(Y) and P(Y|X) are all normal, then does P(X|Y) also can only be normal or not necessarily?...

My 'almost automatic' answer has been 'yes!... P(X|Y) must necessarly be a normal distribution too...', but other members of MHB expressed critics or doubts about that, so I intend to clarify all the aspects not enough clear of the problem. The first step to perform the task is to remember the definition of conditional distribution function. According to...

Conditional probability distribution - Wikipedia, the free encyclopedia

... if the r.v. X has p.d.f. $f_{X} (x)$, the r.v. Y has p.d.f. $f_{Y}(y)$, and X and Y have joint density function $f_{X,Y} (x.y)$, then the conditional probability distribution functions of X and Y, one conditioned by the other, are...

$\displaystyle f_{Y} (y|X=x) = f_{Y|X} (x,y) = \frac{f_{X,Y} (x,y)}{f_{X}(x)}$ (1)

$\displaystyle f_{X} (x|Y=y) = f_{X|Y} (x,y) = \frac{f_{X,Y} (x,y)}{f_{Y}(y)}$ (2)

Very well!... now the basic definitions (1) and (2) give the answer to the question of simon11... why?... observing (1) and (2) it is fully evident their intrinsic symmetry respect to the X and Y, so that is always possible to swap the roles of X and Y and if $f_{X}$,$f_{Y}$ and $f_{Y|X}$ have the same property, no matter which is the property, also $f_{X|Y}$ has that property. After some marginal clarifications, simon11 seems to have been satisfied by the answer. One member of the staff of MHB however wasn’t and required a ‘formal proof’. Well!... in order to do that the first step is to find, under the assumption that X and Y are normal r.v., the explicit expressions of $f_{X}$,$f_{Y}$ and $f_{X,Y}$ and use (1) and (2) to obtain $f_{X|Y}$ and $f_{Y|X}$. No matter of course for the first two...

$\displaystyle f_{X}(x)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{X}}\ e^{- \frac{(x-\mu_{X})^{2}}{2\ \sigma^{2}_{X}}}$ (3)

$\displaystyle f_{Y}(y)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{Y}}\ e^{- \frac{(y-\mu_{Y})^{2}}{2\ \sigma^{2}_{Y}}}$ (4)

... but how to say about $f_{X,Y}$?... 'Monster Wolfram' helps us...

Bivariate Normal Distribution -- from Wolfram MathWorld

$\displaystyle f_{X,Y} (x,y)= \frac{1}{2\ \pi\ \sigma_{X}\ \sigma_{Y}\ \sqrt{1-\rho^{2}}}\ e^{- \frac{z}{2\ (1-\rho^{2})}}$ (5)

... where...

$\displaystyle z= \frac{(x-\mu_{X})^{2}}{\sigma^{2}_{X}} - 2\ \frac{\rho\ (x-\mu_{X})\ (y-\mu_{Y})}{\sigma_{X}\ \sigma_{Y}} + \frac{(y-\mu_{Y})^{2}}{\sigma^{2}_{Y}}$ (6)

$\displaystyle \rho= \text{cor}\ (X,Y)= \frac{V_{X,Y}}{\sigma_{X}\ \sigma_{Y}}$ (7)

Usually $\rho$ is called 'correlation' of X and Y and $V_{X,Y}$ is called 'covariance' of X and Y. The (6) and (7) are very interesting and 'suggestive' because the presence of the term $\rho$. In X and Y independent [or more precisely unrelated...], then $\rho=0$, if not [and that is the case proposed by simon11...] an 'extra term' must be taken into account. Now we are able, using (1) and (2), to compute $f_{Y|X} (x,y)$ and $f_{X|Y} (x,y)$ with a symple division...

$\displaystyle f_{Y|X} (x,y)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{Y}\ \sqrt{1-\rho^{2}}}\ e^{- \frac{u}{2\ (1-\rho^{2})}}$ (8)

... where...

$\displaystyle u= \frac{(y-\mu_{Y})^{2}}{\sigma^{2}_{Y}} -2\ \rho\ \frac{(y-\mu_{Y})\ (x-\mu_{X})}{\sigma_{Y}\ \sigma_{X}} + \rho^{2}\ \frac{(x-\mu_{X})^{2}}{\sigma^{2}_{X}}$ (9)

$\displaystyle f_{X|Y} (x,y)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{X}\ \sqrt{1-\rho^{2}}}\ e^{- \frac{v}{2\ (1-\rho^{2})}}$ (10)

... where...

$\displaystyle v= \frac{(x-\mu_{X})^{2}}{\sigma^{2}_{X}} -2\ \rho\ \frac{(x-\mu_{X})\ (y-\mu_{Y})}{\sigma_{X}\ \sigma_{Y}} + \rho^{2}\ \frac{(y-\mu_{Y})^{2}}{\sigma^{2}_{Y}}$ (11)

So 'finally' we are arrived to an explicit expression for $f_{Y|X}$ and $f_{X|Y}$ in the general case where X and Y are not independent. A I said before $f_{Y|X}$ is obtained from $f_{X|Y}$ swapping the role of X and Y... of course!... now by integration one can compute, if desired, $\mu_{Y|X}$, $\mu_{X|Y}$,$\sigma^{2}_{Y|X}$, $\sigma^{2}_{X|Y}$ and other interesting parameters... now I'm a little tired and that will be made, in case, in a successive post... Kind regards $\chi$ $\sigma$
 
Last edited:
Physics news on Phys.org
chisigma said:
Scope of this thread is to give a complete as possible answer to the question proposed two days ago by the user simon11 on Basic Probability and Statistic forum...

Assume two random variables X and Y are not independent, if P(X), P(Y) and P(Y|X) are all normal, then does P(X|Y) also can only be normal or not necessarily?...

My 'almost automatic' answer has been 'yes!... P(X|Y) must necessarly be a normal distribution too...', but other members of MHB expressed critics or doubts about that, so I intend to clarify all the aspects not enough clear of the problem. The first step to perform the task is to remember the definition of conditional distribution function. According to...

Conditional probability distribution - Wikipedia, the free encyclopedia

... if the r.v. X has p.d.f. $f_{X} (x)$, the r.v. Y has p.d.f. $f_{Y}(y)$, and X and Y have joint density function $f_{X,Y} (x.y)$, then the conditional probability distribution functions of X and Y, one conditioned by the other, are...

$\displaystyle f_{Y} (y|X=x) = f_{Y|X} (x,y) = \frac{f_{X,Y} (x,y)}{f_{X}(x)}$ (1)

$\displaystyle f_{X} (x|Y=y) = f_{X|Y} (x,y) = \frac{f_{X,Y} (x,y)}{f_{Y}(y)}$ (2)

Very well!... now the basic definitions (1) and (2) give the answer to the question of simon11... why?... observing (1) and (2) it is fully evident their intrinsic symmetry respect to the X and Y, so that is always possible to swap the roles of X and Y and if $f_{X}$,$f_{Y}$ and $f_{Y|X}$ have the same property, no matter which is the property, also $f_{X|Y}$ has that property. After some marginal clarifications, simon11 seems to have been satisfied by the answer. One member of the staff of MHB however wasn’t and required a ‘formal proof’. Well!... in order to do that the first step is to find, under the assumption that X and Y are normal r.v., the explicit expressions of $f_{X}$,$f_{Y}$ and $f_{X,Y}$ and use (1) and (2) to obtain $f_{X|Y}$ and $f_{Y|X}$. No matter of course for the first two...

$\displaystyle f_{X}(x)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{X}}\ e^{- \frac{(x-\mu_{X})^{2}}{2\ \sigma^{2}_{X}}}$ (3)

$\displaystyle f_{Y}(y)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{Y}}\ e^{- \frac{(y-\mu_{Y})^{2}}{2\ \sigma^{2}_{Y}}}$ (4)

... but how to say about $f_{X,Y}$?... 'Monster Wolfram' helps us...

Bivariate Normal Distribution -- from Wolfram MathWorld

$\displaystyle f_{X,Y} (x,y)= \frac{1}{2\ \pi\ \sigma_{X}\ \sigma_{Y}\ \sqrt{1-\rho^{2}}}\ e^{- \frac{z}{2\ (1-\rho^{2})}}$ (5)

... where...

$\displaystyle z= \frac{(x-\mu_{X})^{2}}{\sigma^{2}_{X}} - 2\ \frac{\rho\ (x-\mu_{X})\ (y-\mu_{Y})}{\sigma_{X}\ \sigma_{Y}} + \frac{(y-\mu_{Y})^{2}}{\sigma^{2}_{Y}}$ (6)

$\displaystyle \rho= \text{cor}\ (X,Y)= \frac{V_{X,Y}}{\sigma_{X}\ \sigma_{Y}}$ (7)

Usually $\rho$ is called 'correlation' of X and Y and $V_{X,Y}$ is called 'covariance' of X and Y. The (6) and (7) are very interesting and 'suggestive' because the presence of the term $\rho$. In X and Y independent [or more precisely unrelated...], then $\rho=0$, if not [and that is the case proposed by simon11...] an 'extra term' must be taken into account. Now we are able, using (1) and (2), to compute $f_{Y|X} (x,y)$ and $f_{X|Y} (x,y)$ with a symple division...

$\displaystyle f_{Y|X} (x,y)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{Y}\ \sqrt{1-\rho^{2}}}\ e^{- \frac{u}{2\ (1-\rho^{2})}}$ (8)

... where...

$\displaystyle u= \frac{(y-\mu_{Y})^{2}}{\sigma^{2}_{Y}} -2\ \rho\ \frac{(y-\mu_{Y})\ (x-\mu_{X})}{\sigma_{Y}\ \sigma_{X}} + \rho^{2}\ \frac{(x-\mu_{X})^{2}}{\sigma^{2}_{X}}$ (9)

$\displaystyle f_{X|Y} (x,y)= \frac{1}{\sqrt{2\ \pi}\ \sigma_{X}\ \sqrt{1-\rho^{2}}}\ e^{- \frac{v}{2\ (1-\rho^{2})}}$ (10)

... where...

$\displaystyle v= \frac{(x-\mu_{X})^{2}}{\sigma^{2}_{X}} -2\ \rho\ \frac{(x-\mu_{X})\ (y-\mu_{Y})}{\sigma_{X}\ \sigma_{Y}} + \rho^{2}\ \frac{(y-\mu_{Y})^{2}}{\sigma^{2}_{Y}}$ (11)

So 'finally' we are arrived to an explicit expression for $f_{Y|X}$ and $f_{X|Y}$ in the general case where X and Y are not independent. A I said before $f_{Y|X}$ is obtained from $f_{X|Y}$ swapping the role of X and Y... of course!... now by integration one can compute, if desired, $\mu_{Y|X}$, $\mu_{X|Y}$,$\sigma^{2}_{Y|X}$, $\sigma^{2}_{X|Y}$ and other interesting parameters... now I'm a little tired and that will be made, in case, in a successive post... Kind regards $\chi$ $\sigma$

You seem to be assuming that normal marginals implies joint normality. This is false.

If you could prove that both marginals normal plus one conditional normal implies that the joint distribution is normal you would be done. But this requires that the variance of the conditional be independent of the conditioning value, which we would have to justify.CB
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
4K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K