A Some questions about the derivation steps in the Gravitational deflection of light section in Schutz

MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR Summary
My question is referring to some derivation from pages 293-294 of Schutz's second edition (2009) of A First Course in GR.
In the screenshots below there are the equations (11.49) and (11.53).

I don't understand how did he derive equation (11.53) from Eq.(11.49)?
From (11.49) I get: ##d\phi/dy= d\phi/du du/dy = (1/b^2-u^2+2Mu^3)^{-1/2}(1+2My)##.
It seems he neglected the ##2Mu^3## since ##Mu\ll 1##, so ##y\approx u##, but how do we get the added term of ##O(M^2u^2)##?

schutz2.pngschutz1.png
schutz1.png
schutz2.png
 
Physics news on Phys.org
I would have thought\begin{align*}
\dfrac{d\phi}{dy} = \dfrac{d\phi}{du} \left( \dfrac{dy}{du} \right)^{-1} &= \dfrac{( 1 - 2Mu)^{-1} }{\left( b^{-2} - u^2(1-2Mu) \right)^{1/2}}
\end{align*}then because ##y^2 = u^2(1-Mu)^2 \sim u^2(1-2Mu)## and also ##(1-2Mu)^{-1} \sim 1+2Mu + O(M^2u^2) \sim 1 + 2My + O(M^2u^2)## you get ##\mathrm{11.53}##...
 
  • Like
Likes Ibix and MathematicalPhysicist
ergospherical said:
I would have thought\begin{align*}
\dfrac{d\phi}{dy} = \dfrac{d\phi}{du} \left( \dfrac{dy}{du} \right)^{-1} &= \dfrac{( 1 - 2Mu)^{-1} }{\left( b^{-2} - u^2(1-2Mu) \right)^{1/2}}
\end{align*}then because ##y^2 = u^2(1-Mu)^2 \sim u^2(1-2Mu)## and also ##(1-2Mu)^{-1} \sim 1+2Mu + O(M^2u^2) \sim 1 + 2My + O(M^2u^2)## you get ##\mathrm{11.53}##...
It seems I got it wrong. Thanks for correcting me.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top