A Some questions about the derivation steps in the Gravitational deflection of light section in Schutz

Click For Summary
The discussion centers on the derivation of equation (11.53) from equation (11.49) in the context of gravitational deflection of light. The original poster expresses confusion about neglecting the term ##2Mu^3## and how to incorporate the additional term of ##O(M^2u^2)##. They attempt to derive the relationship using the chain rule and approximations, but realize they made an error in their calculations. The key point is the transition from the approximations made in the derivation, particularly regarding the behavior of the terms as ##Mu## approaches zero. Ultimately, the clarification emphasizes the importance of careful handling of the approximations in the derivation process.
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR
My question is referring to some derivation from pages 293-294 of Schutz's second edition (2009) of A First Course in GR.
In the screenshots below there are the equations (11.49) and (11.53).

I don't understand how did he derive equation (11.53) from Eq.(11.49)?
From (11.49) I get: ##d\phi/dy= d\phi/du du/dy = (1/b^2-u^2+2Mu^3)^{-1/2}(1+2My)##.
It seems he neglected the ##2Mu^3## since ##Mu\ll 1##, so ##y\approx u##, but how do we get the added term of ##O(M^2u^2)##?

schutz2.pngschutz1.png
schutz1.png
schutz2.png
 
Physics news on Phys.org
I would have thought\begin{align*}
\dfrac{d\phi}{dy} = \dfrac{d\phi}{du} \left( \dfrac{dy}{du} \right)^{-1} &= \dfrac{( 1 - 2Mu)^{-1} }{\left( b^{-2} - u^2(1-2Mu) \right)^{1/2}}
\end{align*}then because ##y^2 = u^2(1-Mu)^2 \sim u^2(1-2Mu)## and also ##(1-2Mu)^{-1} \sim 1+2Mu + O(M^2u^2) \sim 1 + 2My + O(M^2u^2)## you get ##\mathrm{11.53}##...
 
  • Like
Likes Ibix and MathematicalPhysicist
ergospherical said:
I would have thought\begin{align*}
\dfrac{d\phi}{dy} = \dfrac{d\phi}{du} \left( \dfrac{dy}{du} \right)^{-1} &= \dfrac{( 1 - 2Mu)^{-1} }{\left( b^{-2} - u^2(1-2Mu) \right)^{1/2}}
\end{align*}then because ##y^2 = u^2(1-Mu)^2 \sim u^2(1-2Mu)## and also ##(1-2Mu)^{-1} \sim 1+2Mu + O(M^2u^2) \sim 1 + 2My + O(M^2u^2)## you get ##\mathrm{11.53}##...
It seems I got it wrong. Thanks for correcting me.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
3K
Replies
36
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 62 ·
3
Replies
62
Views
7K
  • · Replies 14 ·
Replies
14
Views
5K
Replies
12
Views
3K