I've become sort of confused on the topic of the linear span versus spanning sets. I know that the span of a subset is the set containing all linear combinations of vectors in V. Is a spanning set then the same thing, or is it something else?(adsbygoogle = window.adsbygoogle || []).push({});

Also, in terms of bases... A basis is a linearly independent spanning set, but I thought a span was a set containing linear combinations... BUT linear combinations generally indicate linear dependence! If that's the case, how is the spanning set linearly independent? I know I'm missing something here, just not sure what! Anyone have a good description that might help? :shy:

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Spanning sets, and linear independence of them

**Physics Forums | Science Articles, Homework Help, Discussion**