B Spin And Angular Momentum of Large Objects

Click For Summary
Quantum spin is a measure of angular momentum in quantum objects, and it can transfer angular momentum from a rotating object (Thing 1) to another (Thing 2) during collisions, unless the collisions are perfectly central. The discussion also touches on recent advancements in the study of fast-spinning nanoscale objects, with a record of 300 billion rpm achieved in 2019. The rotational decoherence of microscale particles is described by a Markovian quantum master equation, which mainly captures how the orientation of these particles decays rather than their angular momentum. Additionally, ongoing experimental efforts aim to place larger objects into quantum superposition, contributing to the understanding of the quantum-classical divide and the measurement problem. This exploration highlights the intersection of quantum mechanics with macroscopic phenomena.
Hornbein
Gold Member
Messages
3,489
Reaction score
2,875
TL;DR
Can quantum spin transfer angular momentum from one large object to another.
I read that quantum spin is the measure of the angular momentum of a quantum object. Suppose you have a rotating Thing 1. Quantum objects bounce off of it then collide with Thing 2. Will this transfer angular momentum from Thing 1 to 2, causing it to rotate?
 
Physics news on Phys.org
Yes. Unless the collisions are exactly central :smile:

##\ ##
 
Hornbein said:
TL;DR Summary: Can quantum spin transfer angular momentum from one large object to another.

I read that quantum spin is the measure of the angular momentum of a quantum object. Suppose you have a rotating Thing 1. Quantum objects bounce off of it then collide with Thing 2. Will this transfer angular momentum from Thing 1 to 2, causing it to rotate?

This may not be directly relevant. I was considering starting another thread about quantum effects of fast spinning nanoscale objects. Scientists broke the record at 300 billion rpm in 2019.

Ultrasensitive torque detection with an optically levitated nanorotor

https://arxiv.org/pdf/1908.03453

Rotational decoherence of microscale particles may be effectively described by a Markovian quantum master equation of Lindblad form [74, 75]. The ensuing jump operators can be related to the microscopic scattering amplitudes for individual collisions between the particle and environmental agents. The rotational motion of nano- to microscale particles is typically much slower than the collisions, so that the environment mainly gains information about the rotor orientation, rather than its angular momentum. The master equation thus describes predominantly how orientational superpositions decay on a timescale determined by the rotor-environment interaction [76, 77] and bounded by the scattering rate, see below.

...

Fundamental tests— The verification of rotational quantum superpositions would also serve to test mod- els of an objective wavefunction collapse. Such theories modify quantum mechanics with the aim of recovering macro-realism without contradicting experimental obser- vations. A prominent example is Continuous Sponta- neous Localization [97], predicting a universal spatial and orientational decoherence and heating mechanism [98]. Observing quantum interference or the lack of collapse- induced heating rules out combinations of the parameters characterising the model [98, 99]. The shape-dependent centre-of-mass and rotational heating rates can be mea- sured with a single trapped particle, facilitating absolute measurements of the collapse parameters.

Quantum rotations of nanoparticles

https://arxiv.org/pdf/2102.00992

Following the citations, there seems to be some interesting experimental work ongoing aimed at trying to put larger and larger objects into quantum superposition: nanoscale, microscale, mesoscale, ... .

I don't know how to ask the right questions, but seems possibly relevant to some recent discussions people have been having about the quantum classical divide and the measurement problem.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Replies
11
Views
1K
Replies
2
Views
634
  • · Replies 4 ·
Replies
4
Views
432
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K