Statistical physics and magnetization

  • #1
PhoenixWright
20
1

Homework Statement



Consider a system of three aligned spins with S=1/2. There are couplings between first neighbors. Each spin has a magnetic moment ## \vec{\mu} = s \mu \vec{S}##. The system is in a field ## H= H\vec{u_z}## at thermal equilibrium. The hamiltonian is:
##H=J[S(1)S(2)+S(2)S(3)] -2\mu H[S_z(1) + S_z(2)+S_z(3)]##
So, we want to calculate:
a) Possible microscopic states and their energy.
b) Internal energy U(T,H) and entropy S(T,H), for 1) T=0, H=0; 2) H=0, J <<kT
c) Partition function in closed form
d) Magnetization M(T,H).

Homework Equations


Below:

The Attempt at a Solution


I have been searching, and I think this is a 1-dimensional problem of the Ising model, but I am not sure, and I have no idea how I should start.
I know that the microscopic states of the system are 8, because there are two spin orientations (so, 2x2x2=8). But, how can I calculate the partition function?
Actually, they ask me about the internal energy and the entropy before the partition function, but all the formulas I know are:
##U=-\frac{\partial \ln Z}{\partial{\beta}} ##

##S=k_B(\ln Z + \beta U) ##
so I guess I need the partition function before, right? Or is there another way to obtain the entropy and the internal energy?
Thank you.
 
Last edited:

Answers and Replies

  • #2
Charles Link
Homework Helper
Insights Author
Gold Member
5,440
2,760
To calculate the partition function, you compute the energies of each of the individual spin states, and you compute ## Z=\sum\limits_{i} e^{-E_i/(k_b T)} ## There are 8 possible states.
 
  • Like
Likes PhoenixWright
  • #3
PhoenixWright
20
1
To calculate the partition function, you compute the energies of each of the individual spin states, and you compute ## Z=\sum\limits_{i} e^{-E_i/(k_b T)} ## There are 8 possible states.
Thank you!
 
Last edited:
  • Like
Likes Charles Link

Suggested for: Statistical physics and magnetization

Replies
2
Views
418
Replies
4
Views
424
  • Last Post
Replies
1
Views
704
Replies
12
Views
1K
Replies
23
Views
304
Replies
5
Views
3K
Replies
0
Views
546
Replies
33
Views
358
Top